BOUNDING THE CONVEX COMBINATION OF ARITHMETIC AND INTEGRAL MEANS IN TERMS OF ONE-PARAMETER HARMONIC AND GEOMETRIC MEANS

被引:39
|
作者
Qian, Wei-Mao [1 ]
Zhang, Wen [2 ]
Chu, Yu-Ming [3 ]
机构
[1] Huzhou Vocat & Tech Coll, Sch Continuing Educ, Huzhou 313000, Zhejiang, Peoples R China
[2] Icahn Sch Med Mt Sinai, Friedman Brain Inst, New York, NY 10029 USA
[3] Huzhou Univ, Dept Math, Huzhou 313000, Zhejiang, Peoples R China
关键词
integral mean; modified Bessel function; arithmetic mean; harmonic mean; geometric mean; SYSTEMS; INEQUALITIES; OPERATOR;
D O I
10.18514/MMN.2019.2334
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the article, we find the best possible parameters lambda(1), mu(1), lambda(2) and mu(2) on the interval [0, 1/2] such that the double inequalities H(a, b; lambda(1)) < alpha A(a, b) + (1 - alpha)T(a, b) < H(a, b; mu(1)), G(a, b; lambda(2)) < alpha A(a, b) + (1 - alpha)T(a, b) < G(a, b; mu(2)) hold for all alpha is an element of[0, 1] and a, b > 0 with a not equal b, where A(a, b) = (a + b)/2, = 2 integral(pi/2)(0) a(cos2 theta) b(sin2 theta) d theta/pi, H(a, b; lambda) = 2[lambda a + (1 - lambda)b][lambda b + (1 - lambda)a]/(a + b), G(a, b; mu) = root[mu a + (1 -mu)b][mu b + (1 - mu)a] are the arithmetic, integral, one-parameter harmonic and one-parameter geometric means of a and b, respectively.
引用
收藏
页码:1157 / 1166
页数:10
相关论文
共 50 条
  • [1] Optimal one-parameter mean bounds for the convex combination of arithmetic and geometric means
    Xia, Weifeng
    Hou, Shouwei
    Wang, Gendi
    Chu, Yuming
    [J]. JOURNAL OF APPLIED ANALYSIS, 2012, 18 (02) : 197 - 207
  • [2] OPTIMAL ONE-PARAMETER MEAN BOUNDS FOR THE CONVEX COMBINATION OF ARITHMETIC AND LOGARITHMIC MEANS
    He, Zai-Yin
    Wang, Miao-Kun
    Chu, Yu-Ming
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (03): : 699 - 707
  • [3] THE OPTIMAL CONVEX COMBINATION BOUNDS OF ARITHMETIC AND HARMONIC MEANS IN TERMS OF POWER MEAN
    Xia, We-Feng
    Janous, Walther
    Chu, Yu-Ming
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2012, 6 (02): : 241 - 248
  • [4] A Geometric Mean of Parameterized Arithmetic and Harmonic Means of Convex Functions
    Kum, Sangho
    Lim, Yongdo
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [5] Sharp bounds for Neuman means in terms of one-parameter family of bivariate means
    Zhi-Hua Shao
    Wei-Mao Qian
    Yu-Ming Chu
    [J]. Journal of Inequalities and Applications, 2014
  • [6] Sharp bounds for Neuman means in terms of one-parameter family of bivariate means
    Shao, Zhi-Hua
    Qian, Wei-Mao
    Chu, Yu-Ming
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [7] Optimal Bounds for Seiffert Mean in terms of One-Parameter Means
    Hu, Hua-Nan
    Tu, Guo-Yan
    Chu, Yu-Ming
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [8] Sharp one-parameter geometric and quadratic means bounds for the Sandor-Yang means
    Wang, Bo
    Luo, Chen-Lan
    Li, Shi-Hui
    Chu, Yu-Ming
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (01)
  • [9] Sharp one-parameter geometric and quadratic means bounds for the Sándor–Yang means
    Bo Wang
    Chen-Lan Luo
    Shi-Hui Li
    Yu-Ming Chu
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [10] Sharp bounds for Sandor mean in terms of arithmetic, geometric and harmonic means
    Qian, Wei-Mao
    Chu, Yu-Ming
    Zhang, Xiao-Hui
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,