Sharp bounds for Neuman means in terms of one-parameter family of bivariate means

被引:0
|
作者
Shao, Zhi-Hua [1 ]
Qian, Wei-Mao [2 ]
Chu, Yu-Ming [1 ]
机构
[1] Hunan City Univ, Sch Math & Computat Sci, Yiyang 413000, Peoples R China
[2] Huzhou Broadcast & TV Univ, Sch Distance Educ, Huzhou 313000, Peoples R China
关键词
Neuman means; one-parameter mean; harmonic mean; geometric mean; arithmetic mean; quadratic mean; contraharmonic mean;
D O I
10.1186/1029-242X-2014-468
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the best possible parameters p(1), p(2), p(3), p4, q(1), q(2), q(3), q(4) is an element of [0,1] such that the double inequalities G(p1) (a, b) < S-HA(a, b) < G(q1) (a, b), Q(p2) (a, b) < S-CA(a, b) < Q(q2) (a, b), H-p3 (a, b) < S-AH(a, b) < H-q3 (a, b), C-p4 (a, b) < S-AC(a, b) < C-q4 (a, b) hold for all a, b > 0 with a not equal b, where S-HA, S-CA, S-AH, S-AC are the Neuman means, and G(p), Q(p), H-p, C-p are the one-parameter means.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Sharp bounds for Neuman means in terms of one-parameter family of bivariate means
    Zhi-Hua Shao
    Wei-Mao Qian
    Yu-Ming Chu
    [J]. Journal of Inequalities and Applications, 2014
  • [2] SHARP BOUNDS FOR SANDOR-YANG MEANS IN TERMS OF ONE-PARAMETER FAMILY OF BIVARIATE MEANS
    Yang, Yue-Ying
    Qian, Wei-Mao
    Xu, Hui-Zuo
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2019, 13 (04): : 1181 - 1196
  • [3] On one-parameter family of bivariate means
    Neuman, Edward
    [J]. AEQUATIONES MATHEMATICAE, 2012, 83 (1-2) : 191 - 197
  • [4] On one-parameter family of bivariate means
    Edward Neuman
    [J]. Aequationes mathematicae, 2012, 83 : 191 - 197
  • [5] A ONE-PARAMETER FAMILY OF BIVARIATE MEANS
    Neuman, Edward
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2013, 7 (03): : 399 - 412
  • [6] SHARP BOUNDS FOR NEUMAN MEANS IN TERMS OF GEOMETRIC, ARITHMETIC AND QUADRATIC MEANS
    Guo, Zhi-Jun
    Zhang, Yan
    Chu, Yu-Ming
    Song, Ying-Qing
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (02): : 301 - 312
  • [7] Sharp one-parameter geometric and quadratic means bounds for the Sandor-Yang means
    Wang, Bo
    Luo, Chen-Lan
    Li, Shi-Hui
    Chu, Yu-Ming
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (01)
  • [8] Optimal Bounds for Seiffert Mean in terms of One-Parameter Means
    Hu, Hua-Nan
    Tu, Guo-Yan
    Chu, Yu-Ming
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [9] Sharp one-parameter geometric and quadratic means bounds for the Sándor–Yang means
    Bo Wang
    Chen-Lan Luo
    Shi-Hui Li
    Yu-Ming Chu
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [10] Sharp bounds for Neuman means in terms of two-parameter contraharmonic and arithmetic mean
    Qian, Wei-Mao
    He, Zai-Yin
    Zhang, Hong-Wei
    Chu, Yu-Ming
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)