Sharp one-parameter geometric and quadratic means bounds for the Sandor-Yang means

被引:41
|
作者
Wang, Bo [1 ]
Luo, Chen-Lan [1 ]
Li, Shi-Hui [1 ]
Chu, Yu-Ming [2 ,3 ]
机构
[1] Yiwu Ind & Commercial Coll, Yiwu 322000, Peoples R China
[2] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[3] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Peoples R China
关键词
Geometric mean; Quadratic mean; Yang mean; Sandor-Yang mean; SINGULAR INTEGRAL OPERATOR; DIFFERENTIAL-EQUATIONS; LIMIT-CYCLES; CONVERGENCE; INEQUALITIES; BOUNDEDNESS; EXISTENCE; VARIANT; TERMS;
D O I
10.1007/s13398-019-00734-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the article, we present the best possible upper and lower bounds for the Sandor-Yang means in terms of the families of one-parameter geometric and quadratic means, and discover new bounds for the inverse tangent and inverse hyperbolic sine functions.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] SHARP BOUNDS FOR SANDOR-YANG MEANS IN TERMS OF ONE-PARAMETER FAMILY OF BIVARIATE MEANS
    Yang, Yue-Ying
    Qian, Wei-Mao
    Xu, Hui-Zuo
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2019, 13 (04): : 1181 - 1196
  • [2] Sharp one-parameter geometric and quadratic means bounds for the Sándor–Yang means
    Bo Wang
    Chen-Lan Luo
    Shi-Hui Li
    Yu-Ming Chu
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [3] SHARP BOUNDS FOR SANDOR-YANG MEANS IN TERMS OF QUADRATIC MEAN
    Xu, Hui-Zuo
    Qian, Wei-Mao
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (04): : 1149 - 1158
  • [4] Sharp power mean bounds for two Sandor-Yang means
    He, Xiao-Hong
    Qian, Wei-Mao
    Xu, Hui-Zuo
    Chu, Yu-Ming
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (03) : 2627 - 2638
  • [5] Sharp bounds for the lemniscatic mean by the one-parameter geometric and quadratic means
    Hui-Zuo Xu
    Wei-Mao Qian
    Yu-Ming Chu
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [6] Sharp bounds for the lemniscatic mean by the one-parameter geometric and quadratic means
    Xu, Hui-Zuo
    Qian, Wei-Mao
    Chu, Yu-Ming
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (01)
  • [7] Improvements of bounds for the Sandor-Yang means
    Qian, Wei-Mao
    Xu, Hui-Zuo
    Chu, Yu-Ming
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019,
  • [8] Sharp bounds for the Sandor-Yang means in terms of arithmetic and contra-harmonic means
    Xu, Hui-Zuo
    Chu, Yu-Ming
    Qian, Wei-Mao
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [9] BOUNDING THE SANDOR-YANG MEANS FOR THE COMBINATIONS OF CONTRAHARMONIC AND ARITHMETIC MEANS
    Qian, Wei-Mao
    Xu, Hui-Zuo
    He, Zai-Yin
    Chu, Yu-Ming
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (02): : 655 - 666
  • [10] Sharp bounds for Neuman means in terms of one-parameter family of bivariate means
    Zhi-Hua Shao
    Wei-Mao Qian
    Yu-Ming Chu
    [J]. Journal of Inequalities and Applications, 2014