SHARP BOUNDS FOR SANDOR-YANG MEANS IN TERMS OF QUADRATIC MEAN

被引:1
|
作者
Xu, Hui-Zuo [1 ]
Qian, Wei-Mao [2 ]
机构
[1] Wenzhou Broadcast & TV Univ, Sch Econ & Management, Wenzhou 325000, Peoples R China
[2] Huzhou Broadcast & TV Univ, Sch Distance Educ, Huzhou 313000, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2018年 / 12卷 / 04期
关键词
Schwab-Borchardt mean; Sandor-Yang mean; arithmetic mean; quadratic mean; COMPLETE ELLIPTIC INTEGRALS; NEUMAN-SANDOR; INEQUALITIES; SEIFFERT; REFINEMENTS; RESPECT; KIND;
D O I
10.7153/jmi-2018-12-87
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the article, we find the best possible parameters alpha, beta, lambda, mu is an element of (1/2, 1) such that the double inequalities Q[alpha a + (1 - alpha)b, alpha b + (1 - alpha)a] < R-QA(a,b) < Q[beta a + (1 - beta)b, beta b + (1 - beta)a], Q[lambda a + (1 - lambda)b, lambda b + (1 - lambda)a] < R-QA(a,b) < Q[mu a + (1 - mu)b, mu b + (1 - mu)a] hold for all a, b > 0 with a not equal b, where Q(a,b) = root(a(2)+b(2))/2 is the quadratic mean, and R-QA(a, b) and R-AQ(a, b) are two Sandor-Yang means.
引用
收藏
页码:1149 / 1158
页数:10
相关论文
共 50 条
  • [1] Sharp power mean bounds for two Sandor-Yang means
    He, Xiao-Hong
    Qian, Wei-Mao
    Xu, Hui-Zuo
    Chu, Yu-Ming
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (03) : 2627 - 2638
  • [2] Sharp one-parameter geometric and quadratic means bounds for the Sandor-Yang means
    Wang, Bo
    Luo, Chen-Lan
    Li, Shi-Hui
    Chu, Yu-Ming
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (01)
  • [3] Sharp bounds for the Sandor-Yang means in terms of arithmetic and contra-harmonic means
    Xu, Hui-Zuo
    Chu, Yu-Ming
    Qian, Wei-Mao
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [4] SHARP BOUNDS FOR SANDOR-YANG MEANS IN TERMS OF ONE-PARAMETER FAMILY OF BIVARIATE MEANS
    Yang, Yue-Ying
    Qian, Wei-Mao
    Xu, Hui-Zuo
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2019, 13 (04): : 1181 - 1196
  • [5] Improvements of bounds for the Sandor-Yang means
    Qian, Wei-Mao
    Xu, Hui-Zuo
    Chu, Yu-Ming
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019,
  • [6] Sharp bounds for Sandor mean in terms of arithmetic, geometric and harmonic means
    Qian, Wei-Mao
    Chu, Yu-Ming
    Zhang, Xiao-Hui
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [7] SHARP BOUNDS FOR NEUMAN-SANDOR MEAN IN TERMS OF THE CONVEX COMBINATION OF QUADRATIC AND FIRST SEIFFERT MEANS
    Chu, Yuming
    Zhao, Tiehong
    Song, Yingqing
    [J]. ACTA MATHEMATICA SCIENTIA, 2014, 34 (03) : 797 - 806
  • [8] Sharp power-type Heronian mean bounds for the Sandor and Yang means
    Zhou, Shuang-Shuang
    Qian, Wei-Mao
    Chu, Yu-Ming
    Zhang, Xiao-Hui
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [9] Sharp bounds for the Neuman-Sandor mean in terms of the power and contraharmonic means
    Jiang, Wei-Dong
    Qi, Feng
    [J]. COGENT MATHEMATICS, 2015, 2
  • [10] Optimal two-parameter geometric and arithmetic mean bounds for the Sandor-Yang mean
    Qian, Wei-Mao
    Yang, Yue-Ying
    Zhang, Hong-Wei
    Chu, Yu-Ming
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)