Sharp bounds for the lemniscatic mean by the one-parameter geometric and quadratic means

被引:0
|
作者
Hui-Zuo Xu
Wei-Mao Qian
Yu-Ming Chu
机构
[1] Wenzhou University of Technology,School of Data Science and Artificial Intelligence
[2] Huzhou Vocational and Technical College,School of Continuing Education
[3] Huzhou Radio and Television University,Institute for Advanced Study Honoring Chen Jian Gong
[4] Hangzhou Normal University,Department of Mathematics
[5] Huzhou University,undefined
关键词
Arc lemniscate function; Lemniscatic mean; Geometric mean; Quadratic mean; One-parameter mean; 33E05; 26E60;
D O I
暂无
中图分类号
学科分类号
摘要
In the article, we present the best possible parameters α1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _1$$\end{document}, α2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _2$$\end{document}, α3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _3$$\end{document}, α4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _4$$\end{document}, β1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _1$$\end{document}, β2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _2$$\end{document}, β3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _3$$\end{document} and β4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _4$$\end{document} on the interval (0, 1) such that the double inequalities Gα1(a,b)<LMGAa,b<Gβ1(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G_{{\alpha _1}}}(a,b)< L{M_{GA}}\left( {a,b} \right) < {G_{{\beta _1}}}(a,b)$$\end{document}, Gα2(a,b)<LMAGa,b<Gβ2(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G_{{\alpha _2}}}(a,b)< L{M_{AG}}\left( {a,b} \right) < {G_{{\beta _2}}}(a,b)$$\end{document}, Qα3(a,b)<LMAQa,b<Qβ3(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Q_{{\alpha _3}}}(a,b)< L{M_{AQ}}\left( {a,b} \right) < {Q_{{\beta _3}}}(a,b)$$\end{document} and Qα4(a,b)<LMQAa,b<Qβ4(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Q_{{\alpha _4}}}(a,b)< L{M_{QA}}\left( {a,b} \right) < {Q_{{\beta _4}}}(a,b)$$\end{document} hold for a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b > 0$$\end{document} with a≠b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \ne b$$\end{document}, where Gp(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G_p}(a,b)$$\end{document} and Qp(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Q_p}(a,b)$$\end{document} are respectively the one-parameter geometric and quadratic means, LMGA(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L{M_{GA}}(a,b)$$\end{document}, LMAG(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L{M_{AG}}(a,b)$$\end{document}, LMAQ(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L{M_{AQ}}(a,b)$$\end{document} and LMQA(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L{M_{QA}}(a,b)$$\end{document} are four lemniscatic means of a and b. As applications, some new bounds for the arc lemniscate functions are given.
引用
下载
收藏
相关论文
共 50 条
  • [41] Sharp bounds for Neuman means in terms of two-parameter contraharmonic and arithmetic mean
    Qian, Wei-Mao
    He, Zai-Yin
    Zhang, Hong-Wei
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [42] A ONE-PARAMETER FAMILY OF BIVARIATE MEANS
    Neuman, Edward
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2013, 7 (03): : 399 - 412
  • [43] Sharp bounds for Neuman means in terms of two-parameter contraharmonic and arithmetic mean
    Wei-Mao Qian
    Zai-Yin He
    Hong-Wei Zhang
    Yu-Ming Chu
    Journal of Inequalities and Applications, 2019
  • [44] On confidence bounds for one-parameter exponential families
    Alizadeh, M.
    Nadarajah, S.
    Doostparast, M.
    Parchami, A.
    Mashinchi, M.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (02) : 1569 - 1582
  • [45] Sharp bounds for Heinz mean by Heron mean and other means
    Zhu, Ling
    AIMS MATHEMATICS, 2020, 5 (01): : 723 - 731
  • [46] Sharp Bounds for the Weighted Geometric Mean of the First Seiffert and Logarithmic Means in terms of Weighted Generalized Heronian Mean
    Matejicka, Ladislav
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [47] Sharp bounds for the difference between the arithmetic and geometric means
    Aldaz, J. M.
    ARCHIV DER MATHEMATIK, 2012, 99 (04) : 393 - 399
  • [48] Sharp bounds for the difference between the arithmetic and geometric means
    J. M. Aldaz
    Archiv der Mathematik, 2012, 99 : 393 - 399
  • [49] Logarithmic convexity of the one-parameter mean values
    Cheung, Wing-Sum
    Qi, Feng
    TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (01): : 231 - 237
  • [50] Sharp power mean bounds for the lemniscate type means
    Tie-Hong Zhao
    Zhong-Hua Shen
    Yu-Ming Chu
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115