Sharp bounds for the lemniscatic mean by the one-parameter geometric and quadratic means

被引:0
|
作者
Hui-Zuo Xu
Wei-Mao Qian
Yu-Ming Chu
机构
[1] Wenzhou University of Technology,School of Data Science and Artificial Intelligence
[2] Huzhou Vocational and Technical College,School of Continuing Education
[3] Huzhou Radio and Television University,Institute for Advanced Study Honoring Chen Jian Gong
[4] Hangzhou Normal University,Department of Mathematics
[5] Huzhou University,undefined
关键词
Arc lemniscate function; Lemniscatic mean; Geometric mean; Quadratic mean; One-parameter mean; 33E05; 26E60;
D O I
暂无
中图分类号
学科分类号
摘要
In the article, we present the best possible parameters α1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _1$$\end{document}, α2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _2$$\end{document}, α3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _3$$\end{document}, α4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _4$$\end{document}, β1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _1$$\end{document}, β2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _2$$\end{document}, β3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _3$$\end{document} and β4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _4$$\end{document} on the interval (0, 1) such that the double inequalities Gα1(a,b)<LMGAa,b<Gβ1(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G_{{\alpha _1}}}(a,b)< L{M_{GA}}\left( {a,b} \right) < {G_{{\beta _1}}}(a,b)$$\end{document}, Gα2(a,b)<LMAGa,b<Gβ2(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G_{{\alpha _2}}}(a,b)< L{M_{AG}}\left( {a,b} \right) < {G_{{\beta _2}}}(a,b)$$\end{document}, Qα3(a,b)<LMAQa,b<Qβ3(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Q_{{\alpha _3}}}(a,b)< L{M_{AQ}}\left( {a,b} \right) < {Q_{{\beta _3}}}(a,b)$$\end{document} and Qα4(a,b)<LMQAa,b<Qβ4(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Q_{{\alpha _4}}}(a,b)< L{M_{QA}}\left( {a,b} \right) < {Q_{{\beta _4}}}(a,b)$$\end{document} hold for a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b > 0$$\end{document} with a≠b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \ne b$$\end{document}, where Gp(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G_p}(a,b)$$\end{document} and Qp(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Q_p}(a,b)$$\end{document} are respectively the one-parameter geometric and quadratic means, LMGA(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L{M_{GA}}(a,b)$$\end{document}, LMAG(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L{M_{AG}}(a,b)$$\end{document}, LMAQ(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L{M_{AQ}}(a,b)$$\end{document} and LMQA(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L{M_{QA}}(a,b)$$\end{document} are four lemniscatic means of a and b. As applications, some new bounds for the arc lemniscate functions are given.
引用
下载
收藏
相关论文
共 50 条
  • [21] Sharp Power Mean Bounds for the Combination of Seiffert and Geometric Means
    Chu, Yu-Ming
    Qiu, Ye-Fang
    Wang, Miao-Kun
    ABSTRACT AND APPLIED ANALYSIS, 2010,
  • [22] Sharp bounds for the Toader mean in terms of arithmetic and geometric means
    Yang, Zhen-Hang
    Tian, Jing-Feng
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (03)
  • [23] SHARP BOUNDS FOR SANDOR-YANG MEANS IN TERMS OF QUADRATIC MEAN
    Xu, Hui-Zuo
    Qian, Wei-Mao
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (04): : 1149 - 1158
  • [24] Sharp bounds for Toader mean in terms of arithmetic, quadratic, and Neuman means
    Li, Jun-Feng
    Qian, Wei-Mao
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [25] Sharp bounds for Toader mean in terms of arithmetic, quadratic, and Neuman means
    Jun-Feng Li
    Wei-Mao Qian
    Yu-Ming Chu
    Journal of Inequalities and Applications, 2015
  • [26] Sharp bounds for the Neuman mean in terms of the quadratic and second Seiffert means
    Chu, Yu-Ming
    Wang, Hua
    Zhao, Tie-Hong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [27] Sharp bounds for the Neuman mean in terms of the quadratic and second Seiffert means
    Yu-Ming Chu
    Hua Wang
    Tie-Hong Zhao
    Journal of Inequalities and Applications, 2014
  • [28] Sharp bounds for Sandor mean in terms of arithmetic, geometric and harmonic means
    Qian, Wei-Mao
    Chu, Yu-Ming
    Zhang, Xiao-Hui
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [29] SHARP BOUNDS FOR SEIFFERT MEAN IN TERMS OF WEIGHTED POWER MEANS OF ARITHMETIC MEAN AND GEOMETRIC MEAN
    Yang, Zhen-Hang
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (02): : 499 - 511
  • [30] SHARP TWO PARAMETER BOUNDS FOR THE LOGARITHMIC MEAN AND THE ARITHMETIC-GEOMETRIC MEAN OF GAUSS
    Chu, Yu-Ming
    Wang, Miao-Kun
    Qiu, Ye-Fang
    Ma, Xiao-Yan
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2013, 7 (03): : 349 - 355