Finite-size scaling of the level compressibility at the Anderson transition

被引:0
|
作者
M.L. Ndawana
R.A. Römer
M. Schreiber
机构
[1] Institut für Physik,
[2] Technische Universität,undefined
[3] 09107 Chemnitz,undefined
[4] Germany,undefined
[5] School of Engineering and Science,undefined
[6] International University Bremen,undefined
[7] 28725 Bremen,undefined
[8] Germany,undefined
关键词
PACS. 71.30.+h Metal-insulator transitions and other electronic transitions – 71.23.An Theories and models; localized states – 72.15.Rn Localization effects (Anderson or weak localization);
D O I
暂无
中图分类号
学科分类号
摘要
We compute the number level variance Σ2 and the level compressibility χ from high precision data for the Anderson model of localization and show that they can be used in order to estimate the critical properties at the metal-insulator transition by means of finite-size scaling. With N, W, and L denoting, respectively, linear system size, disorder strength, and the average number of levels in units of the mean level spacing, we find that both χ(N, W) and the integrated Σ2 obey finite-size scaling. The high precision data was obtained for an anisotropic three-dimensional Anderson model with disorder given by a box distribution of width W/2. We compute the critical exponent as ν≈ 1.45±0.12 and the critical disorder as Wc≈ 8.59±0.05 in agreement with previous transfer-matrix studies in the anisotropic model. Furthermore, we find χ≈ 0.28±0.06 at the metal-insulator transition in very close agreement with previous results.
引用
收藏
页码:399 / 407
页数:8
相关论文
共 50 条
  • [1] Finite-size scaling of the level compressibility at the Anderson transition
    Ndawana, ML
    Römer, RA
    Schreiber, M
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2002, 27 (03): : 399 - 407
  • [2] Multifractal finite-size scaling and universality at the Anderson transition
    Rodriguez, Alberto
    Vasquez, Louella J.
    Slevin, Keith
    Roemer, Rudolf A.
    [J]. PHYSICAL REVIEW B, 2011, 84 (13):
  • [3] Finite-size scaling of entanglement entropy at the Anderson transition with interactions
    Zhao, An
    Chu, Rui-Lin
    Shen, Shun-Qing
    [J]. PHYSICAL REVIEW B, 2013, 87 (20):
  • [4] Multifractal finite-size scaling at the Anderson transition in the unitary symmetry class
    Lindinger, Jakob
    Rodriguez, Alberto
    [J]. PHYSICAL REVIEW B, 2017, 96 (13)
  • [5] Finite-Size Scaling at the Jamming Transition
    Goodrich, Carl P.
    Liu, Andrea J.
    Nagel, Sidney R.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (09)
  • [6] Finite-size scaling analysis of the glass transition
    Berthier, L
    [J]. PHYSICAL REVIEW LETTERS, 2003, 91 (05)
  • [7] FINITE SIZE SCALING ANALYSIS OF THE ANDERSON TRANSITION
    Kramer, B.
    MacKinnon, A.
    Ohtsuki, T.
    Slevin, K.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (12-13): : 1841 - 1854
  • [8] Scaling of the Level Compressibility at the Anderson Metal-Insulator Transition
    Ndawana, Macleans L.
    Roemer, Rudolf A.
    Schreiber, Michael
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72
  • [9] The Anderson transition in three-dimensional quasiperiodic lattices: Finite-size scaling and critical exponent
    Rieth, T
    Schreiber, M
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1997, 104 (01): : 99 - 102
  • [10] Analytical realization of finite-size scaling for anderson localization: Is there a transition in the 2D case?
    Suslov, IM
    [J]. JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2005, 101 (04) : 661 - 675