Finite-size scaling of the level compressibility at the Anderson transition

被引:0
|
作者
M.L. Ndawana
R.A. Römer
M. Schreiber
机构
[1] Institut für Physik,
[2] Technische Universität,undefined
[3] 09107 Chemnitz,undefined
[4] Germany,undefined
[5] School of Engineering and Science,undefined
[6] International University Bremen,undefined
[7] 28725 Bremen,undefined
[8] Germany,undefined
关键词
PACS. 71.30.+h Metal-insulator transitions and other electronic transitions – 71.23.An Theories and models; localized states – 72.15.Rn Localization effects (Anderson or weak localization);
D O I
暂无
中图分类号
学科分类号
摘要
We compute the number level variance Σ2 and the level compressibility χ from high precision data for the Anderson model of localization and show that they can be used in order to estimate the critical properties at the metal-insulator transition by means of finite-size scaling. With N, W, and L denoting, respectively, linear system size, disorder strength, and the average number of levels in units of the mean level spacing, we find that both χ(N, W) and the integrated Σ2 obey finite-size scaling. The high precision data was obtained for an anisotropic three-dimensional Anderson model with disorder given by a box distribution of width W/2. We compute the critical exponent as ν≈ 1.45±0.12 and the critical disorder as Wc≈ 8.59±0.05 in agreement with previous transfer-matrix studies in the anisotropic model. Furthermore, we find χ≈ 0.28±0.06 at the metal-insulator transition in very close agreement with previous results.
引用
收藏
页码:399 / 407
页数:8
相关论文
共 50 条
  • [41] Finite-size scaling of the quasispecies model
    Campos, PRA
    Fontanari, JF
    PHYSICAL REVIEW E, 1998, 58 (02): : 2664 - 2667
  • [42] Finite-size scaling of the quasispecies model
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 58 (2-B):
  • [43] ORDER PARAMETER AND FINITE-SIZE SCALING
    TAKANO, H
    SAITO, Y
    PROGRESS OF THEORETICAL PHYSICS, 1985, 73 (06): : 1369 - 1376
  • [44] Finite-size scaling of meson propagators
    Damgaard, PH
    Diamantini, MC
    Hernández, P
    Jansen, K
    NUCLEAR PHYSICS B, 2002, 629 (1-3) : 445 - 478
  • [45] Finite-size scaling in disordered systems
    Chamati, H
    Korutcheva, E
    Tonchev, NS
    PHYSICAL REVIEW E, 2002, 65 (02): : 1 - 026129
  • [46] Finite-size scaling of kinetic quantities
    Tarasenko, AA
    Nieto, F
    Uebing, C
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1999, 1 (15) : 3437 - 3440
  • [47] Finite-size scaling of eigenstate thermalization
    Beugeling, W.
    Moessner, R.
    Haque, Masudul
    PHYSICAL REVIEW E, 2014, 89 (04):
  • [48] FINITE-SIZE SCALING AND CRITICAL NUCLEATION
    MON, KK
    JASNOW, D
    PHYSICAL REVIEW LETTERS, 1987, 59 (26) : 2983 - 2986
  • [49] FINITE-SIZE SCALING FOR POTTS MODELS
    BORGS, C
    KOTECKY, R
    MIRACLESOLE, S
    JOURNAL OF STATISTICAL PHYSICS, 1991, 62 (3-4) : 529 - 551
  • [50] FINITE-SIZE SCALING FOR THE BOSE CONDENSATE
    SINGH, S
    PATHRIA, RK
    CANADIAN JOURNAL OF PHYSICS, 1985, 63 (03) : 358 - 365