Finite-size scaling of the level compressibility at the Anderson transition

被引:0
|
作者
M.L. Ndawana
R.A. Römer
M. Schreiber
机构
[1] Institut für Physik,
[2] Technische Universität,undefined
[3] 09107 Chemnitz,undefined
[4] Germany,undefined
[5] School of Engineering and Science,undefined
[6] International University Bremen,undefined
[7] 28725 Bremen,undefined
[8] Germany,undefined
关键词
PACS. 71.30.+h Metal-insulator transitions and other electronic transitions – 71.23.An Theories and models; localized states – 72.15.Rn Localization effects (Anderson or weak localization);
D O I
暂无
中图分类号
学科分类号
摘要
We compute the number level variance Σ2 and the level compressibility χ from high precision data for the Anderson model of localization and show that they can be used in order to estimate the critical properties at the metal-insulator transition by means of finite-size scaling. With N, W, and L denoting, respectively, linear system size, disorder strength, and the average number of levels in units of the mean level spacing, we find that both χ(N, W) and the integrated Σ2 obey finite-size scaling. The high precision data was obtained for an anisotropic three-dimensional Anderson model with disorder given by a box distribution of width W/2. We compute the critical exponent as ν≈ 1.45±0.12 and the critical disorder as Wc≈ 8.59±0.05 in agreement with previous transfer-matrix studies in the anisotropic model. Furthermore, we find χ≈ 0.28±0.06 at the metal-insulator transition in very close agreement with previous results.
引用
下载
收藏
页码:399 / 407
页数:8
相关论文
共 50 条
  • [31] Finite-size scaling in extreme statistics
    Gyoergyi, G.
    Moloney, N. R.
    Ozogany, K.
    Racz, Z.
    PHYSICAL REVIEW LETTERS, 2008, 100 (21)
  • [32] FINITE-SIZE SCALING IN A MICROCANONICAL ENSEMBLE
    DESAI, RC
    HEERMANN, DW
    BINDER, K
    JOURNAL OF STATISTICAL PHYSICS, 1988, 53 (3-4) : 795 - 823
  • [33] FINITE-SIZE SCALING AND PHENOMENOLOGICAL RENORMALIZATION
    NIGHTINGALE, P
    JOURNAL OF APPLIED PHYSICS, 1982, 53 (11) : 7927 - 7932
  • [34] Finite-size scaling at quantum transitions
    Campostrini, Massimo
    Pelissetto, Andrea
    Vicari, Ettore
    PHYSICAL REVIEW B, 2014, 89 (09)
  • [35] Corrected finite-size scaling in percolation
    Li, Jiantong
    Ostling, Mikael
    PHYSICAL REVIEW E, 2012, 86 (04)
  • [36] MAGNETIZATIONS FROM FINITE-SIZE SCALING
    HAMER, CJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (12): : L675 - L683
  • [37] Finite-size scaling in anisotropic systems
    Tonchev, N. S.
    PHYSICAL REVIEW E, 2007, 75 (03):
  • [38] Finite-size scaling in complex networks
    Hong, Hyunsuk
    Ha, Meesoon
    Park, Hyunggyu
    PHYSICAL REVIEW LETTERS, 2007, 98 (25)
  • [39] Finite-size scaling in disordered systems
    Chamati, H
    Korutcheva, E
    Tonchev, NS
    PHYSICAL REVIEW E, 2002, 65 (02): : 1 - 026129
  • [40] Finite-size scaling of meson propagators
    Damgaard, PH
    Diamantini, MC
    Hernández, P
    Jansen, K
    NUCLEAR PHYSICS B, 2002, 629 (1-3) : 445 - 478