Finite-size scaling of the level compressibility at the Anderson transition

被引:0
|
作者
M.L. Ndawana
R.A. Römer
M. Schreiber
机构
[1] Institut für Physik,
[2] Technische Universität,undefined
[3] 09107 Chemnitz,undefined
[4] Germany,undefined
[5] School of Engineering and Science,undefined
[6] International University Bremen,undefined
[7] 28725 Bremen,undefined
[8] Germany,undefined
关键词
PACS. 71.30.+h Metal-insulator transitions and other electronic transitions – 71.23.An Theories and models; localized states – 72.15.Rn Localization effects (Anderson or weak localization);
D O I
暂无
中图分类号
学科分类号
摘要
We compute the number level variance Σ2 and the level compressibility χ from high precision data for the Anderson model of localization and show that they can be used in order to estimate the critical properties at the metal-insulator transition by means of finite-size scaling. With N, W, and L denoting, respectively, linear system size, disorder strength, and the average number of levels in units of the mean level spacing, we find that both χ(N, W) and the integrated Σ2 obey finite-size scaling. The high precision data was obtained for an anisotropic three-dimensional Anderson model with disorder given by a box distribution of width W/2. We compute the critical exponent as ν≈ 1.45±0.12 and the critical disorder as Wc≈ 8.59±0.05 in agreement with previous transfer-matrix studies in the anisotropic model. Furthermore, we find χ≈ 0.28±0.06 at the metal-insulator transition in very close agreement with previous results.
引用
下载
收藏
页码:399 / 407
页数:8
相关论文
共 50 条
  • [21] ON THE QUANTUM FINITE-SIZE SCALING
    KORUTCHEVA, ER
    TONCHEV, NS
    PHYSICA A, 1993, 195 (1-2): : 215 - 222
  • [22] Finite-size scaling of 4He at the superfluid transition
    Gasparini, Francis M.
    Kimball, Mark O.
    Mooney, Kevin P.
    Diaz-Avila, Manuel
    REVIEWS OF MODERN PHYSICS, 2008, 80 (03) : 1009 - 1059
  • [23] Microcanonical finite-size scaling
    Kastner, M
    Promberger, M
    Hüller, A
    JOURNAL OF STATISTICAL PHYSICS, 2000, 99 (5-6) : 1251 - 1264
  • [24] Microcanonical Finite-Size Scaling
    Michael Kastner
    Michael Promberger
    Alfred Hüller
    Journal of Statistical Physics, 2000, 99 : 1251 - 1264
  • [25] Finite-size scaling of power-law bond-disordered Anderson models
    Lima, RPA
    da Cruz, HR
    Cressoni, JC
    Lyra, ML
    PHYSICAL REVIEW B, 2004, 69 (16) : 165117 - 1
  • [26] FINITE-SIZE SCALING AND CRITICAL EXPONENTS - A NEW APPROACH AND ITS APPLICATION TO ANDERSON LOCALIZATION
    HOFSTETTER, E
    SCHREIBER, M
    EUROPHYSICS LETTERS, 1993, 21 (09): : 933 - 939
  • [27] Conformal invariance, multifractality, and finite-size scaling at Anderson localization transitions in two dimensions
    Obuse, H.
    Subramaniam, A. R.
    Furusaki, A.
    Gruzberg, I. A.
    Ludwig, A. W. W.
    PHYSICAL REVIEW B, 2010, 82 (03)
  • [28] Finite-size scaling for the glass transition: The role of a static length scale
    Karmakar, Smarajit
    Procaccia, Itamar
    PHYSICAL REVIEW E, 2012, 86 (06):
  • [29] Finite-size scaling method for the Berezinskii-Kosterlitz-Thouless transition
    Hsieh, Yun-Da
    Kao, Ying-Jer
    Sandvik, Anders W.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [30] Phase transition and finite-size scaling in the vertex-cover problem
    Hartmann, AK
    Barthel, W
    Weigt, M
    COMPUTER PHYSICS COMMUNICATIONS, 2005, 169 (1-3) : 234 - 237