Finite-size scaling method for the Berezinskii-Kosterlitz-Thouless transition

被引:63
|
作者
Hsieh, Yun-Da [1 ,2 ]
Kao, Ying-Jer [1 ]
Sandvik, Anders W. [2 ,3 ]
机构
[1] Natl Taiwan Univ, Ctr Theoret Sci, Taipei 10607, Taiwan
[2] Natl Taiwan Univ, Dept Phys, Taipei 10607, Taiwan
[3] Boston Univ, Dept Phys, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
classical Monte Carlo simulations; classical phase transitions (theory); finite-size scaling; ROUGHENING TRANSITION; MODEL; OVERRELAXATION; DYNAMICS; BEHAVIOR;
D O I
10.1088/1742-5468/2013/09/P09001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We test an improved finite-size scaling method for reliably extracting the critical temperature T-BKT of a Berezinskii-Kosterlitz-Thouless (BKT) transition. Using known single-parameter logarithmic corrections to the spin stiffness rho(s) at T-BKT in combination with the Kosterlitz-Nelson relation between the transition temperature and the stiffness, rho(s)(T-BKT) = 2T(BKT)/pi, we define a size-dependent transition temperature T-BKT(L-1, L-2) based on a pair of system sizes L-1, L-2, e.g., L-2 - 2L(1). We use Monte Carlo data for the standard two-dimensional classical XY model to demonstrate that this quantity is well behaved and can be reliably extrapolated to the thermodynamic limit using the next expected logarithmic correction beyond the ones included in defining T-BKT(L-1, L-2). For the Monte Carlo calculations we use GPU (graphical processing unit) computing to obtain high-precision data for L up to 512. We find that the sub-leading logarithmic corrections have significant effects on the extrapolation. Our result T-BKT = 0.8935(1) is several error bars above the previously best estimates of the transition temperature, T-BKT approximate to 0.8929. If only the leading log-correction is used, the result is, however, consistent with the lower value, suggesting that previous works have underestimated T-BKT because of the neglect of sub-leading logarithms. Our method is easy to implement in practice and should be applicable to generic BKT transitions.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Broadening of the Berezinskii-Kosterlitz-Thouless superconducting transition by inhomogeneity and finite-size effects
    Benfatto, L.
    Castellani, C.
    Giamarchi, T.
    [J]. PHYSICAL REVIEW B, 2009, 80 (21)
  • [2] Uniaxial modulation and the Berezinskii-Kosterlitz-Thouless transition
    Giuliano, Domenico
    Nguyen, Phong H.
    Nava, Andrea
    Boninsegni, Massimo
    [J]. PHYSICAL REVIEW B, 2023, 107 (19)
  • [3] Disordered Berezinskii-Kosterlitz-Thouless transition and superinsulation
    Sankar, S.
    Vinokur, V. M.
    Tripathi, V.
    [J]. PHYSICAL REVIEW B, 2018, 97 (02)
  • [4] Berezinskii-Kosterlitz-Thouless Transition in Ultrathin Niobium Films
    Altanany, S. M.
    Zajcewa, I.
    Minikayev, R.
    Cieplak, M. Z.
    [J]. ACTA PHYSICA POLONICA A, 2023, 143 (02) : 129 - 133
  • [5] Broadening of the Berezinskii-Kosterlitz-Thouless transition by correlated disorder
    Maccari, I.
    Benfatto, L.
    Castellani, C.
    [J]. PHYSICAL REVIEW B, 2017, 96 (06)
  • [6] Berezinskii-Kosterlitz-Thouless transition with a constraint lattice action
    Bietenholz, Wolfgang
    Gerber, Urs
    Rejon-Barrera, Fernando G.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [7] Effect of amplitude fluctuations on the Berezinskii-Kosterlitz-Thouless transition
    Erez, Amir
    Meir, Yigal
    [J]. PHYSICAL REVIEW B, 2013, 88 (18):
  • [8] Flux noise near the Berezinskii-Kosterlitz-Thouless transition
    Wagenblast, KH
    Fazio, R
    [J]. JETP LETTERS, 1998, 68 (04) : 312 - 316
  • [9] Berezinskii-Kosterlitz-Thouless transition in rhenium nitride films
    Takiguchi, Kosuke
    Krockenberger, Yoshiharu
    Taniyasu, Yoshitaka
    Yamamoto, Hideki
    [J]. PHYSICAL REVIEW B, 2024, 110 (02)
  • [10] On Berezinskii-Kosterlitz-Thouless transition in monoaxial chiral helimagnets
    Proskurin, Igor
    Ovchinnikov, Alexander S.
    Kishine, Jun-ichiro
    [J]. 8TH JOINT EUROPEAN MAGNETIC SYMPOSIA (JEMS2016), 2017, 903