Finite-size scaling in anisotropic systems

被引:10
|
作者
Tonchev, N. S. [1 ]
机构
[1] Bulgarian Acad Sci, G Nadjakov Inst Solid State Phys, Sofia 1784, Bulgaria
来源
PHYSICAL REVIEW E | 2007年 / 75卷 / 03期
关键词
D O I
10.1103/PhysRevE.75.031110
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present analytical results for the finite-size scaling in d-dimensional O(N) systems with strong anisotropy where the critical exponents (e.g., nu(parallel to) and nu(perpendicular to)) depend on the direction. Prominent examples are systems with long-range interactions, decaying with the interparticle distance r as r(-d-sigma) with different exponents sigma in corresponding spatial directions, systems with space-"time" anisotropy near a quantum critical point, and systems with Lifshitz points. The anisotropic properties involve also the geometry of the systems. We consider O(N) systems in the N ->infinity limit, confined to a d-dimensional layer with geometry L(m)x infinity(n);m+n=d and periodic boundary conditions across the finite m dimensions. The arising difficulties are avoided using a technique of calculations based on the analytical properties of the generalized Mittag-Leffler functions.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Nonuniversal finite-size scaling in anisotropic systems
    Chen, XS
    Dohm, V
    [J]. PHYSICAL REVIEW E, 2004, 70 (05): : 7
  • [2] Finite-size scaling of the correlation length in anisotropic systems
    Chen, X. S.
    Zhang, H. Y.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (23-24): : 4212 - 4218
  • [3] On the symmetry of universal finite-size scaling functions in anisotropic systems
    Hucht, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (31): : L481 - L487
  • [4] Universal finite-size scaling amplitudes in anisotropic scaling
    Henkel, M
    Schollwöck, U
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (16): : 3333 - 3350
  • [5] Finite-size scaling in disordered systems
    Chamati, H
    Korutcheva, E
    Tonchev, NS
    [J]. PHYSICAL REVIEW E, 2002, 65 (02):
  • [6] Finite-size scaling theory for anisotropic percolation models
    Sinha, Santanu
    Santra, S. B.
    [J]. INDIAN JOURNAL OF PHYSICS AND PROCEEDINGS OF THE INDIAN ASSOCIATION FOR THE CULTIVATION OF SCIENCE, 2008, 82 (07): : 919 - 927
  • [7] Finite-size scaling of correlation functions in finite systems
    Xin Zhang
    GaoKe Hu
    YongWen Zhang
    XiaoTeng Li
    XiaoSong Chen
    [J]. Science China Physics, Mechanics & Astronomy, 2018, 61
  • [8] Finite-size scaling of correlation functions in finite systems
    Xin Zhang
    GaoKe Hu
    YongWen Zhang
    XiaoTeng Li
    XiaoSong Chen
    [J]. Science China(Physics,Mechanics & Astronomy), 2018, 61 (12) : 71 - 77
  • [9] Finite-size scaling of correlation functions in finite systems
    Zhang, Xin
    Hu, GaoKe
    Zhang, YongWen
    Li, XiaoTeng
    Chen, XiaoSong
    [J]. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2018, 61 (12)
  • [10] FINITE-SIZE SCALING FOR ATOMIC AND MOLECULAR SYSTEMS
    Kais, Sabre
    Serra, Pablo
    [J]. ADVANCES IN CHEMICAL PHYSICS, VOL 125, 2003, 125 : 1 - 99