The Anderson transition in three-dimensional quasiperiodic lattices: Finite-size scaling and critical exponent

被引:12
|
作者
Rieth, T
Schreiber, M
机构
[1] Institut Für Physik, Technische Universität Chemnitz
来源
关键词
D O I
10.1007/s002570050424
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The influence of quasiperiodicity on the metal-insulator transition (MIT) in the Anderson model of localization is investigated. The eigenstates of a 3D Amman-Kramer lattice are studied in the vertex model. The participation numbers are calculated and evaluated by means of a finite-size scaling procedure to characterize the MIT. The critical disorder W-c = 21.2 +/- 0.6 and the exponent nu = 1.4 +/- 0.3 are computed.
引用
收藏
页码:99 / 102
页数:4
相关论文
共 50 条
  • [1] Universal finite-size scaling functions for percolation on three-dimensional lattices
    Lin, CY
    Hu, CK
    [J]. PHYSICAL REVIEW E, 1998, 58 (02): : 1521 - 1527
  • [2] CRITICAL EXPONENT OF PERCOLATION CONDUCTIVITY BY FINITE-SIZE SCALING
    SAHIMI, M
    HUGHES, BD
    SCRIVEN, LE
    DAVIS, HT
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1983, 16 (16): : L521 - L527
  • [3] Finite-size scaling at the jamming transition: Corrections to scaling and the correlation-length critical exponent
    Vagberg, Daniel
    Valdez-Balderas, Daniel
    Moore, M. A.
    Olsson, Peter
    Teitel, S.
    [J]. PHYSICAL REVIEW E, 2011, 83 (03):
  • [4] Finite-size scaling of the level compressibility at the Anderson transition
    Ndawana, ML
    Römer, RA
    Schreiber, M
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2002, 27 (03): : 399 - 407
  • [5] Multifractal finite-size scaling and universality at the Anderson transition
    Rodriguez, Alberto
    Vasquez, Louella J.
    Slevin, Keith
    Roemer, Rudolf A.
    [J]. PHYSICAL REVIEW B, 2011, 84 (13):
  • [6] Finite-size scaling of the level compressibility at the Anderson transition
    M.L. Ndawana
    R.A. Römer
    M. Schreiber
    [J]. The European Physical Journal B - Condensed Matter and Complex Systems, 2002, 27 : 399 - 407
  • [7] Critical exponent for the Anderson transition in the three-dimensional orthogonal universality class
    Slevin, Keith
    Ohtsuki, Tomi
    [J]. NEW JOURNAL OF PHYSICS, 2014, 16
  • [8] Finite-size scaling of entanglement entropy at the Anderson transition with interactions
    Zhao, An
    Chu, Rui-Lin
    Shen, Shun-Qing
    [J]. PHYSICAL REVIEW B, 2013, 87 (20):
  • [9] Universal amplitudes in the finite-size scaling of three-dimensional spin models
    Weigel, M
    Janke, W
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (11) : 2318 - 2321
  • [10] Finite-size scaling behavior and intrinsic critical exponents of nickel: Comparison with the three-dimensional Heisenberg model
    Wang, Jun
    Wu, Wei
    Zhao, Fan
    Zhao, Guo-meng
    [J]. PHYSICAL REVIEW B, 2011, 84 (17):