The Anderson transition in three-dimensional quasiperiodic lattices: Finite-size scaling and critical exponent

被引:12
|
作者
Rieth, T
Schreiber, M
机构
[1] Institut Für Physik, Technische Universität Chemnitz
来源
关键词
D O I
10.1007/s002570050424
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The influence of quasiperiodicity on the metal-insulator transition (MIT) in the Anderson model of localization is investigated. The eigenstates of a 3D Amman-Kramer lattice are studied in the vertex model. The participation numbers are calculated and evaluated by means of a finite-size scaling procedure to characterize the MIT. The critical disorder W-c = 21.2 +/- 0.6 and the exponent nu = 1.4 +/- 0.3 are computed.
引用
收藏
页码:99 / 102
页数:4
相关论文
共 50 条
  • [11] Finite-size scaling of entanglement entropy at the Anderson transition with interactions
    Zhao, An
    Chu, Rui-Lin
    Shen, Shun-Qing
    [J]. PHYSICAL REVIEW B, 2013, 87 (20):
  • [12] Universal amplitudes in the finite-size scaling of three-dimensional spin models
    Weigel, M
    Janke, W
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (11) : 2318 - 2321
  • [13] Finite-size scaling behavior and intrinsic critical exponents of nickel: Comparison with the three-dimensional Heisenberg model
    Wang, Jun
    Wu, Wei
    Zhao, Fan
    Zhao, Guo-meng
    [J]. PHYSICAL REVIEW B, 2011, 84 (17):
  • [14] Multifractal finite-size scaling at the Anderson transition in the unitary symmetry class
    Lindinger, Jakob
    Rodriguez, Alberto
    [J]. PHYSICAL REVIEW B, 2017, 96 (13)
  • [15] Universal amplitude ratios in finite-size scaling: three-dimensional Ising model
    Weigel, M
    Janke, W
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 83-4 : 721 - 723
  • [16] Finite-size scaling and multifractality at the Anderson transition for the three Wigner-Dyson symmetry classes in three dimensions
    Ujfalusi, Laszlo
    Varga, Imre
    [J]. PHYSICAL REVIEW B, 2015, 91 (18)
  • [17] Critical exponents of the three-dimensional Ising universality class from finite-size scaling with standard and improved actions
    Hasenbusch, M
    Pinn, K
    Vinti, S
    [J]. PHYSICAL REVIEW B, 1999, 59 (17) : 11471 - 11483
  • [18] Phase transition in the three dimensional Heisenberg spin glass: Finite-size scaling analysis
    Fernandez, L. A.
    Martin-Mayor, V.
    Perez-Gaviro, S.
    Tarancon, A.
    Young, A. P.
    [J]. PHYSICAL REVIEW B, 2009, 80 (02)
  • [19] Finite-size scaling analysis of localization transition for scalar waves in a three-dimensional ensemble of resonant point scatterers
    Skipetrov, S. E.
    [J]. PHYSICAL REVIEW B, 2016, 94 (06)
  • [20] Characterization of coherent structures in three-dimensional turbulent flows using the finite-size Lyapunov exponent
    Bettencourt, Joao H.
    Lopez, Cristobal
    Hernandez-Garcia, Emilio
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (25)