Multifractal finite-size scaling at the Anderson transition in the unitary symmetry class

被引:15
|
作者
Lindinger, Jakob [1 ]
Rodriguez, Alberto [1 ]
机构
[1] Albert Ludwigs Univ Freiburg, Phys Inst, Hermann Herder Str 3, D-79104 Freiburg, Germany
关键词
METAL-INSULATOR-TRANSITION; WAVE-FUNCTIONS; MAGNETIC-FIELD; MOBILITY EDGE; LOCALIZATION; STATES; MODEL;
D O I
10.1103/PhysRevB.96.134202
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We use multifractal finite-size scaling to perform a high-precision numerical study of the critical properties of the Anderson localization-delocalization transition in the unitary symmetry class, considering the Anderson model including a random magnetic flux. We demonstrate the scale invariance of the distribution of wave-function intensities at the critical point and study its behavior across the transition. Our analysis, involving more than 4 x 10(6) independently generated wave functions of system sizes up to L-3 = 150(3), yields accurate estimates for the critical exponent of the localization length, upsilon = 1.446(1.440,1.452), the critical value of the disorder strength, and the multifractal exponents.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Multifractal finite-size scaling and universality at the Anderson transition
    Rodriguez, Alberto
    Vasquez, Louella J.
    Slevin, Keith
    Roemer, Rudolf A.
    [J]. PHYSICAL REVIEW B, 2011, 84 (13):
  • [2] Finite-size scaling of the level compressibility at the Anderson transition
    Ndawana, ML
    Römer, RA
    Schreiber, M
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2002, 27 (03): : 399 - 407
  • [3] Finite-size scaling of the level compressibility at the Anderson transition
    M.L. Ndawana
    R.A. Römer
    M. Schreiber
    [J]. The European Physical Journal B - Condensed Matter and Complex Systems, 2002, 27 : 399 - 407
  • [4] Finite-size scaling of entanglement entropy at the Anderson transition with interactions
    Zhao, An
    Chu, Rui-Lin
    Shen, Shun-Qing
    [J]. PHYSICAL REVIEW B, 2013, 87 (20):
  • [5] Finite-size scaling and multifractality at the Anderson transition for the three Wigner-Dyson symmetry classes in three dimensions
    Ujfalusi, Laszlo
    Varga, Imre
    [J]. PHYSICAL REVIEW B, 2015, 91 (18)
  • [6] Finite-Size Scaling at the Jamming Transition
    Goodrich, Carl P.
    Liu, Andrea J.
    Nagel, Sidney R.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (09)
  • [7] Inhomogeneous sandpile model:: Crossover from multifractal scaling to finite-size scaling
    Cernak, Jozef
    [J]. PHYSICAL REVIEW E, 2006, 73 (06):
  • [8] Finite-size scaling analysis of the glass transition
    Berthier, L
    [J]. PHYSICAL REVIEW LETTERS, 2003, 91 (05)
  • [9] FINITE SIZE SCALING ANALYSIS OF THE ANDERSON TRANSITION
    Kramer, B.
    MacKinnon, A.
    Ohtsuki, T.
    Slevin, K.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (12-13): : 1841 - 1854
  • [10] The Anderson transition in three-dimensional quasiperiodic lattices: Finite-size scaling and critical exponent
    Rieth, T
    Schreiber, M
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1997, 104 (01): : 99 - 102