Critical exponent for the Anderson transition in the three-dimensional orthogonal universality class

被引:108
|
作者
Slevin, Keith [1 ]
Ohtsuki, Tomi [2 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Phys, Toyonaka, Osaka 5600043, Japan
[2] Sophia Univ, Dept Phys, Chiyoda Ku, Tokyo 1028554, Japan
来源
NEW JOURNAL OF PHYSICS | 2014年 / 16卷
关键词
NONLINEAR SIGMA-MODELS; DISORDERED-SYSTEMS; SCALING THEORY; BETA-FUNCTION; DIMENSIONS; LOCALIZATION; DIFFUSION; SYMMETRY; ABSENCE;
D O I
10.1088/1367-2630/16/1/015012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report a careful finite size scaling study of the metal-insulator transition in Anderson's model of localization. We focus on the estimation of the critical exponent v that describes the divergence of the localization length. We verify the universality of this critical exponent for three different distributions of the random potential: box, normal and Cauchy. Our results for the critical exponent are consistent with the measured values obtained in experiments on the dynamical localization transition in the quantum kicked rotor realized in a cold atomic gas.
引用
收藏
页数:19
相关论文
共 50 条