On a sharp weighted Sobolev inequality on the upper half-space and its applications

被引:0
|
作者
Zhang, Jianjun [1 ]
Felix, Diego [2 ]
Medeiros, Everaldo [2 ]
机构
[1] Chongqing Jiaotong Univ, Coll Math & Stat, Chongqing 400074, Peoples R China
[2] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Brazil
来源
关键词
Weighted Sobolev inequality; Trace inequality; Upper half-space; Minimizers; Neumann problem; CONSTANT;
D O I
10.1007/s42985-022-00165-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish a sharp weighted Sobolev inequality on the upper half-space. We also discourse existence and nonexistence of minimizer . As an application, we study a quasilinear problem on the upper half-space.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Sharp Reversed Hardy-Littlewood-Sobolev Inequality on the Half Space R+n
    Quoc Anh Ngo
    Van Hoang Nguyen
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (20) : 6187 - 6230
  • [22] The spectrum of a weighted Laplacian in the half-space
    Boulmezaoud, Tahar Zamene
    Kerdid, Nabil
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (02) : 280 - 288
  • [23] DYNAMIC HALF-SPACE RANGE REPORTING AND ITS APPLICATIONS
    AGARWAL, PK
    MATOUSEK, J
    ALGORITHMICA, 1995, 13 (04) : 325 - 345
  • [24] A weighted anisotropic Sobolev type inequality and its applications to Hardy inequalities
    di Blasio, Giuseppina
    Pisante, Giovanni
    Psaradakis, Georgios
    MATHEMATISCHE ANNALEN, 2021, 379 (3-4) : 1343 - 1362
  • [25] A weighted anisotropic Sobolev type inequality and its applications to Hardy inequalities
    Giuseppina di Blasio
    Giovanni Pisante
    Georgios Psaradakis
    Mathematische Annalen, 2021, 379 : 1343 - 1362
  • [26] A SHARP ADAMS-TYPE INEQUALITY FOR WEIGHTED SOBOLEV SPACES
    do O, Joao Marcos
    Macedo, Abiel Costa
    de Oliveira, Jose Francisco
    QUARTERLY JOURNAL OF MATHEMATICS, 2020, 71 (02): : 517 - 538
  • [27] The Drury-Arveson Space on the Siegel Upper Half-space and a von Neumann Type Inequality
    Arcozzi, Nicola
    Chalmoukis, Nikolaos
    Monguzzi, Alessandro
    Peloso, Marco M.
    Salvatori, Maura
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2021, 93 (06)
  • [28] A sharp Hardy–Sobolev inequality with boundary term and applications
    Jonison L. Carvalho
    Marcelo F. Furtado
    Everaldo S. Medeiros
    Nonlinear Differential Equations and Applications NoDEA, 2022, 29
  • [29] Subcritical approach to sharp Hardy-Littlewood-Sobolev type inequalities on the upper half space
    Doe, Jingbo
    Guo, Qianqiao
    Zhu, Meijun
    ADVANCES IN MATHEMATICS, 2017, 312 : 1 - 45
  • [30] Best constant in Sobolev trace inequalities on the half-space
    Nazaret, Bruno
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (10) : 1977 - 1985