On a sharp weighted Sobolev inequality on the upper half-space and its applications

被引:0
|
作者
Zhang, Jianjun [1 ]
Felix, Diego [2 ]
Medeiros, Everaldo [2 ]
机构
[1] Chongqing Jiaotong Univ, Coll Math & Stat, Chongqing 400074, Peoples R China
[2] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Brazil
来源
关键词
Weighted Sobolev inequality; Trace inequality; Upper half-space; Minimizers; Neumann problem; CONSTANT;
D O I
10.1007/s42985-022-00165-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish a sharp weighted Sobolev inequality on the upper half-space. We also discourse existence and nonexistence of minimizer . As an application, we study a quasilinear problem on the upper half-space.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] On Sobolev norms involving Hardy operators in a half-space
    Frank, Rupert L.
    Merz, Konstantin
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 285 (10)
  • [32] The Dirichlet Problem on the Upper Half-Space
    Huang, Jinjin
    Qiao, Lei
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [33] On a Generalization of Valiron's Inequality for k-hypermonogenic Functions on Upper Half-Space
    Constales, D.
    De Almeida, R.
    Krausshar, R. S.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1464 - +
  • [34] A SHARP INEQUALITY AND ITS APPLICATIONS
    Li, Suyu
    Zhu, Meijun
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (03) : 433 - 446
  • [35] A sharp Sobolev inequality and its applications to an indefinite elliptic equation with Neumann boundary conditions
    de Souza, Manasses
    Felix, Diego D.
    de Medeiros, Everaldo S.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 197
  • [36] Sharp constants in the doubly weighted Hardy-Littlewood-Sobolev inequality
    WU Di
    SHI ZuoShunHua
    YAN DunYan
    ScienceChina(Mathematics), 2014, 57 (05) : 963 - 970
  • [37] Sharp constants in the doubly weighted Hardy-Littlewood-Sobolev inequality
    Wu Di
    Shi ZuoShunHua
    Yan DunYan
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (05) : 963 - 970
  • [38] Sharp constants in the doubly weighted Hardy-Littlewood-Sobolev inequality
    Di Wu
    ZuoShunHua Shi
    DunYan Yan
    Science China Mathematics, 2014, 57 : 963 - 970
  • [39] Weighted Sobolev inequality in Musielak-Orlicz space
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (01) : 86 - 97
  • [40] CLASSIFICATION OF EXTREMAL FUNCTIONS TO LOGARITHMIC HARDY-LITTLEWOOD-SOBOLEV INEQUALITY ON THE UPPER HALF SPACE
    Dou, Jingbo
    Li, Ye
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (08) : 3939 - 3953