On a sharp weighted Sobolev inequality on the upper half-space and its applications

被引:0
|
作者
Zhang, Jianjun [1 ]
Felix, Diego [2 ]
Medeiros, Everaldo [2 ]
机构
[1] Chongqing Jiaotong Univ, Coll Math & Stat, Chongqing 400074, Peoples R China
[2] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Brazil
来源
关键词
Weighted Sobolev inequality; Trace inequality; Upper half-space; Minimizers; Neumann problem; CONSTANT;
D O I
10.1007/s42985-022-00165-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish a sharp weighted Sobolev inequality on the upper half-space. We also discourse existence and nonexistence of minimizer . As an application, we study a quasilinear problem on the upper half-space.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] A sharp Hardy-Sobolev inequality with boundary term and applications
    Carvalho, Jonison L.
    Furtado, Marcelo F.
    Medeiros, Everaldo S.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 29 (01):
  • [43] On a Sobolev type inequality and its applications
    Bednorz, Witold
    STUDIA MATHEMATICA, 2006, 176 (02) : 113 - 137
  • [44] The John–Nirenberg Inequality of Weighted BLO Space and Its Applications
    Huan Zhao
    Zongguang Liu
    The Journal of Geometric Analysis, 2022, 32
  • [45] A NONEXISTENCE THEOREM FOR AN EQUATION WITH CRITICAL SOBOLEV EXPONENT IN THE HALF-SPACE
    BERESTYCKI, H
    GROSSI, M
    PACELLA, F
    MANUSCRIPTA MATHEMATICA, 1992, 77 (2-3) : 265 - 281
  • [46] RECALCULATION OF THE OBSERVED FIELD INTO UPPER HALF-SPACE
    YAKIMCHUK, NA
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA B-GEOLOGICHNI KHIMICHNI TA BIOLOGICHNI NAUKI, 1984, (10): : 27 - 28
  • [47] Conditions for the existence of solutions to a quasilinear inequality in half-space
    Galaktionov, VA
    Egorov, YV
    Kondrat'ev, VA
    Pokhozhaev, SI
    MATHEMATICAL NOTES, 2000, 67 (1-2) : 119 - 121
  • [48] Conditions for the existence of solutions to a quasilinear inequality in half-space
    V. A. Galaktionov
    Yu. V. Egorov
    V. A. Kondrat’ev
    S. I. Pokhozhaev
    Mathematical Notes, 2000, 67 : 119 - 121
  • [49] Sharp estimates for the gradient of the generalized Poisson integral for a half-space
    Kresin, Gershon
    Maz'ya, Vladimir
    GEORGIAN MATHEMATICAL JOURNAL, 2018, 25 (02) : 283 - 290
  • [50] Sharp quantitative stability of Poincare-Sobolev inequality in the hyperbolic space and applications to fast diffusion flows
    Bhakta, Mousomi
    Ganguly, Debdip
    Karmakar, Debabrata
    Mazumdar, Saikat
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2025, 64 (01)