CLASSIFICATION OF EXTREMAL FUNCTIONS TO LOGARITHMIC HARDY-LITTLEWOOD-SOBOLEV INEQUALITY ON THE UPPER HALF SPACE

被引:4
|
作者
Dou, Jingbo [1 ]
Li, Ye [2 ]
机构
[1] Shaanxi Normal Univ, Sch Math & Informat Sci, Xian 710119, Shaanxi, Peoples R China
[2] Cent Michigan Univ, Dept Math, Mt Pleasant, MI 48859 USA
来源
基金
中国国家自然科学基金;
关键词
Logarithmic Hardy-Littlewood-Sobolev inequality; extremal functions; integral system; Kelvin transformation; method of moving spheres; CONFORMALLY INVARIANT EQUATIONS; ELLIPTIC-EQUATIONS; MOSER-TRUDINGER; MOVING SPHERES; THEOREMS; UNIQUENESS;
D O I
10.3934/dcds.2018171
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we mainly classify the extremal functions of logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space R-+(n), and also present some remarks on the extremal functions of logarithmic Hardy-Littlewood-Sobolev inequality on the whole space R-n. Our main techniques are Kelvin transformation and the method of moving spheres in integral forms.
引用
收藏
页码:3939 / 3953
页数:15
相关论文
共 50 条