Weighted Hardy-Littlewood-Sobolev inequalities on the upper half space

被引:13
|
作者
Dou, Jingbo [1 ]
机构
[1] Xian Univ Finance & Econ, Sch Stat, Xian 710100, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Hardy-Littlewood-Sobolev inequality; weighted function; extremal function; upper half space; INTEGRAL-EQUATIONS; FRACTIONAL INTEGRALS; SINGULARITY ANALYSIS; SYSTEMS;
D O I
10.1142/S0219199715500674
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish a weighted Hardy-Littlewood-Sobolev (HLS) inequality on the upper half space using a weighted Hardy type inequality on the upper half space with boundary term, and discuss the existence of extremal functions based on symmetrization argument. As an application, we can show a weighted Sobolev-Hardy trace inequality with p-biharmonic operator.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Subcritical approach to sharp Hardy-Littlewood-Sobolev type inequalities on the upper half space
    Doe, Jingbo
    Guo, Qianqiao
    Zhu, Meijun
    [J]. ADVANCES IN MATHEMATICS, 2017, 312 : 1 - 45
  • [2] Sharp Hardy-Littlewood-Sobolev Inequality on the Upper Half Space
    Dou, Jingbo
    Zhu, Meijun
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (03) : 651 - 687
  • [3] Sobolev and Hardy-Littlewood-Sobolev inequalities
    Dolbeault, Jean
    Jankowiak, Gaspard
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (06) : 1689 - 1720
  • [4] Reverse Hardy-Littlewood-Sobolev inequalities
    Carrillo, Jose A.
    Delgadino, Matias G.
    Dolbeault, Jean
    Frank, Rupert L.
    Hoffmann, Franca
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 132 : 133 - 165
  • [5] CLASSIFICATION OF EXTREMAL FUNCTIONS TO LOGARITHMIC HARDY-LITTLEWOOD-SOBOLEV INEQUALITY ON THE UPPER HALF SPACE
    Dou, Jingbo
    Li, Ye
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (08): : 3939 - 3953
  • [6] SOBOLEV AND HARDY-LITTLEWOOD-SOBOLEV INEQUALITIES: DUALITY AND FAST DIFFUSION
    Dolbeault, Jean
    [J]. MATHEMATICAL RESEARCH LETTERS, 2011, 18 (06) : 1037 - 1050
  • [7] Subcritical approach to sharp Hardy-Littlewood-Sobolev type inequalities on the upper half space (vol 312, pg 1, 2017)
    Dou, Jingbo
    Guo, Qianqiao
    Zhu, Meijun
    [J]. ADVANCES IN MATHEMATICS, 2017, 317 : 640 - 644
  • [8] SHARP CONSTANTS IN THE HARDY-LITTLEWOOD-SOBOLEV AND RELATED INEQUALITIES
    LIEB, EH
    [J]. ANNALS OF MATHEMATICS, 1983, 118 (02) : 349 - 374
  • [9] Extremals in Hardy-Littlewood-Sobolev inequalities for stable processes
    de Pablo, Arturo
    Quiros, Fernando
    Ritorto, Antonella
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 507 (01)
  • [10] Stability of Hardy-Littlewood-Sobolev inequalities with lower bounds
    Chen, Lu
    Lu, Guozhen
    Tang, Hanli
    [J]. ADVANCES IN MATHEMATICS, 2024, 450