Subcritical approach to sharp Hardy-Littlewood-Sobolev type inequalities on the upper half space

被引:39
|
作者
Doe, Jingbo [1 ]
Guo, Qianqiao [2 ]
Zhu, Meijun [3 ]
机构
[1] Xian Univ Finance & Econ, Sch Stat, Xian 710100, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Dept Appl Math, Xian 710129, Shaanxi, Peoples R China
[3] Univ Oklahoma, Dept Math, Norman, OK 73019 USA
基金
中国国家自然科学基金;
关键词
Subcritical approach; Sharp Hardy-Littlewood-Sobolev inequality; Best constant;
D O I
10.1016/j.aim.2017.03.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we establish the reversed sharp Hardy-Littlewood-Sobolev (HLS for short) inequality on the upper half space and obtain a new HLS type integral inequality on the upper half space (extending an inequality found by Hang, Wang and Yan in [6]) by introducing a uniform approach. The extremal functions are classified via the method of moving spheres, and the best constants are computed. The new approach can also be applied to obtain the classical HLS inequality and other similar inequalities. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 45
页数:45
相关论文
共 50 条
  • [1] Subcritical approach to sharp Hardy-Littlewood-Sobolev type inequalities on the upper half space (vol 312, pg 1, 2017)
    Dou, Jingbo
    Guo, Qianqiao
    Zhu, Meijun
    ADVANCES IN MATHEMATICS, 2017, 317 : 640 - 644
  • [2] Sharp Hardy-Littlewood-Sobolev Inequality on the Upper Half Space
    Dou, Jingbo
    Zhu, Meijun
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (03) : 651 - 687
  • [3] Weighted Hardy-Littlewood-Sobolev inequalities on the upper half space
    Dou, Jingbo
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (05)
  • [4] Reversed Hardy-Littlewood-Sobolev inequalities with vertical weights on the upper half space
    Dou, Jingbo
    Hu, Yunyun
    Ma, Jingjing
    MATHEMATISCHE ZEITSCHRIFT, 2025, 309 (03)
  • [5] SHARP CONSTANTS IN THE HARDY-LITTLEWOOD-SOBOLEV AND RELATED INEQUALITIES
    LIEB, EH
    ANNALS OF MATHEMATICS, 1983, 118 (02) : 349 - 374
  • [6] Sobolev and Hardy-Littlewood-Sobolev inequalities
    Dolbeault, Jean
    Jankowiak, Gaspard
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (06) : 1689 - 1720
  • [7] Sharp Hardy-Littlewood-Sobolev inequalities on the octonionic Heisenberg group
    Christ, Michael
    Liu, Heping
    Zhang, An
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (01) : 1 - 18
  • [8] Sharp Hardy-Littlewood-Sobolev inequalities on quaternionic Heisenberg groups
    Christ, Michael
    Liu, Heping
    Zhang, An
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 130 : 361 - 395
  • [9] Sharp Reversed Hardy-Littlewood-Sobolev Inequality on the Half Space R+n
    Quoc Anh Ngo
    Van Hoang Nguyen
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (20) : 6187 - 6230
  • [10] Reverse Hardy-Littlewood-Sobolev inequalities
    Carrillo, Jose A.
    Delgadino, Matias G.
    Dolbeault, Jean
    Frank, Rupert L.
    Hoffmann, Franca
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 132 : 133 - 165