Subcritical approach to sharp Hardy-Littlewood-Sobolev type inequalities on the upper half space

被引:39
|
作者
Doe, Jingbo [1 ]
Guo, Qianqiao [2 ]
Zhu, Meijun [3 ]
机构
[1] Xian Univ Finance & Econ, Sch Stat, Xian 710100, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Dept Appl Math, Xian 710129, Shaanxi, Peoples R China
[3] Univ Oklahoma, Dept Math, Norman, OK 73019 USA
基金
中国国家自然科学基金;
关键词
Subcritical approach; Sharp Hardy-Littlewood-Sobolev inequality; Best constant;
D O I
10.1016/j.aim.2017.03.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we establish the reversed sharp Hardy-Littlewood-Sobolev (HLS for short) inequality on the upper half space and obtain a new HLS type integral inequality on the upper half space (extending an inequality found by Hang, Wang and Yan in [6]) by introducing a uniform approach. The extremal functions are classified via the method of moving spheres, and the best constants are computed. The new approach can also be applied to obtain the classical HLS inequality and other similar inequalities. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 45
页数:45
相关论文
共 50 条
  • [31] THE REVERSED HARDY-LITTLEWOOD-SOBOLEV TYPE INTEGRAL SYSTEMS WITH WEIGHTS
    Liu, Xiaoqian
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (03): : 989 - 996
  • [32] Extremal problems of Hardy-Littlewood-Sobolev inequalities on compact Riemannian manifolds
    Zhang, Shutao
    Han, Yazhou
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 495 (02)
  • [33] Sharp Hardy–Littlewood–Sobolev inequalities on the octonionic Heisenberg group
    Michael Christ
    Heping Liu
    An Zhang
    Calculus of Variations and Partial Differential Equations, 2016, 55
  • [34] Probabilistic Approach to Fractional Integrals and the Hardy-Littlewood-Sobolev Inequality
    Applebaum, David
    Banuelos, Rodrigo
    ANALYTIC METHODS IN INTERDISCIPLINARY APPLICATIONS, 2015, 116 : 17 - 40
  • [35] Hardy and Sobolev inequalities in the half space
    Y. Mizuta
    T. Shimomura
    Acta Mathematica Hungarica, 2020, 161 : 230 - 244
  • [36] Hardy and Sobolev inequalities in the half space
    Mizuta, Y.
    Shimomura, T.
    ACTA MATHEMATICA HUNGARICA, 2020, 161 (01) : 230 - 244
  • [37] Hardy-Littlewood-Sobolev Inequalities on p-Adic Central Morrey Spaces
    Wu, Qing Yan
    Fu, Zun Wei
    JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [38] Hardy-Littlewood-Sobolev and Stein-Weiss inequalities on homogeneous Lie groups
    Kassymov, Aidyn
    Ruzhansky, Michael
    Suragan, Durvudkhan
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2019, 30 (08) : 643 - 655
  • [39] Generalized Logarithmic Hardy-Littlewood-Sobolev Inequality
    Dolbeault, Jean
    Li, Xingyu
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (23) : 17862 - 17874
  • [40] Hardy-Littlewood-Sobolev inequality on the parabolic biangle
    Ben Salem, Nejib
    Mustapha, Sami
    RAMANUJAN JOURNAL, 2021, 56 (01): : 387 - 409