Extremals in Hardy-Littlewood-Sobolev inequalities for stable processes

被引:2
|
作者
de Pablo, Arturo [1 ]
Quiros, Fernando [2 ]
Ritorto, Antonella [3 ]
机构
[1] Univ Carlos III Madrid, Dept Matemat, Leganes 28911, Spain
[2] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
[3] Katholische Univ Eichstatt Ingolstadt, Math Geograph Fak, D-85071 Eichstatt, Germany
基金
欧盟地平线“2020”;
关键词
Concentration-compactness principle; alpha-stable processes; Elliptic problems with critical; nonlinearities; CONCENTRATION-COMPACTNESS PRINCIPLE; ELLIPTIC-EQUATIONS; CONCAVE; CALCULUS;
D O I
10.1016/j.jmaa.2021.125742
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of an extremal function in the Hardy-Littlewood-Sobolev inequality for the energy associated to an stable operator. To this aim we obtain a concentration-compactness principle for stable processes in R-N. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条