Hardy-Littlewood-Sobolev inequalities on compact Riemannian manifolds and applications

被引:23
|
作者
Han, Yazhou [1 ]
Zhu, Meijun [2 ]
机构
[1] China Jiliang Univ, Dept Math, Coll Sci, Hangzhou 310018, Zhejiang, Peoples R China
[2] Univ Oklahoma, Dept Math, Norman, OK 73019 USA
基金
中国国家自然科学基金;
关键词
CONFORMAL GEOMETRY; CURVATURE; EQUATIONS; YAMABE; CONVERGENCE; 4-MANIFOLDS; LAPLACIANS; EXISTENCE; SPHERE; FLOW;
D O I
10.1016/j.jde.2015.06.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we extend Hardy Littlewood Sobolev inequalities on compact Riemannian manifolds for dimension n not equal 0 2. As one application, we solve a generalized Yamabe problem on locally conformally flat manifolds via a new designed energy functional and a new variational approach. Even for the classic Yamabe problem on locally conformally flat manifolds, our approach provides a new and relatively simpler solution. (C) 2015 Published by Elsevier Inc.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 50 条