Optimal Hardy-Sobolev inequalities on compact Riemannian manifolds

被引:9
|
作者
Jaber, Hassan [1 ]
机构
[1] Univ Lorraine, Inst Elie Cartan Lorraine, UMR 7502, F-54506 Vandoeuvre Les Nancy, France
关键词
Compact Riemannian manifolds; Hardy-Sobolev inequalities; Blow-up; Optimal inequalities; GAGLIARDO-NIRENBERG INEQUALITIES; CONSTANT PROBLEM; SHARP CONSTANTS; EXISTENCE; EXTREMALS; SYMMETRY;
D O I
10.1016/j.jmaa.2014.07.075
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a compact Riemannian manifold (M, g) of dimension n >= 3, a point x(0) is an element of M and s is an element of (0,2), the Hardy-Sobolev embedding yields the existence of A, B > 0 such that (integral(M)d(g)(x,x(0)/vertical bar u vertical bar(n-2)/(2(n-s))dv(g))(n-s)/(n-2) <= A integral(M) vertical bar del u vertical bar(2)(g)dv(g) + B integral(M) u(2) dv(g) for all u is an element of H-1(2) (M). It has been proved in Jaber [20] that A >= K (n, s) and that one can take any value A > K (n, s) in (1), where K (n, s) is the best possible constant in the Euclidean Hardy-Sobolev inequality. In the present manuscript, we prove that one can take A = K(n, s) in (1). (C) 2014 Published by Elsevier Inc.
引用
收藏
页码:1869 / 1888
页数:20
相关论文
共 50 条