Optimal Hardy-Sobolev inequalities on compact Riemannian manifolds

被引:9
|
作者
Jaber, Hassan [1 ]
机构
[1] Univ Lorraine, Inst Elie Cartan Lorraine, UMR 7502, F-54506 Vandoeuvre Les Nancy, France
关键词
Compact Riemannian manifolds; Hardy-Sobolev inequalities; Blow-up; Optimal inequalities; GAGLIARDO-NIRENBERG INEQUALITIES; CONSTANT PROBLEM; SHARP CONSTANTS; EXISTENCE; EXTREMALS; SYMMETRY;
D O I
10.1016/j.jmaa.2014.07.075
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a compact Riemannian manifold (M, g) of dimension n >= 3, a point x(0) is an element of M and s is an element of (0,2), the Hardy-Sobolev embedding yields the existence of A, B > 0 such that (integral(M)d(g)(x,x(0)/vertical bar u vertical bar(n-2)/(2(n-s))dv(g))(n-s)/(n-2) <= A integral(M) vertical bar del u vertical bar(2)(g)dv(g) + B integral(M) u(2) dv(g) for all u is an element of H-1(2) (M). It has been proved in Jaber [20] that A >= K (n, s) and that one can take any value A > K (n, s) in (1), where K (n, s) is the best possible constant in the Euclidean Hardy-Sobolev inequality. In the present manuscript, we prove that one can take A = K(n, s) in (1). (C) 2014 Published by Elsevier Inc.
引用
收藏
页码:1869 / 1888
页数:20
相关论文
共 50 条
  • [31] Maximal characterization of Hardy-Sobolev spaces on manifolds
    Badr, N.
    Dafni, G.
    [J]. CONCENTRATION, FUNCTIONAL INEQUALITIES AND ISOPERIMETRY, 2011, 545 : 13 - +
  • [32] IMPROVED HARDY-SOBOLEV INEQUALITIES FOR RADIAL DERIVATIVE
    Wang, Wei-Cang
    Yang, Qiao-Hua
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (01): : 203 - 210
  • [33] Fractional Hardy-Sobolev inequalities on half spaces
    Musina, Roberta
    Nazarov, Alexander I.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 178 : 32 - 40
  • [34] Extremal functions for optimal Sobolev inequalities on compact manifolds
    Djadli, Z
    Druet, O
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2001, 12 (01) : 59 - 84
  • [35] Extremal functions for optimal Sobolev inequalities on compact manifolds
    Zindine Djadli
    Olivier Druet
    [J]. Calculus of Variations and Partial Differential Equations, 2001, 12 : 59 - 84
  • [36] Sharp Hardy and Hardy-Sobolev inequalities with point singularities on the boundary
    Barbatis, G.
    Filippas, S.
    Tertikas, A.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 117 : 146 - 184
  • [37] Fractional Hardy-Sobolev Inequalities with Magnetic Fields
    Liu, Min
    Jiang, Fengli
    Guo, Zhenyu
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2019, 2019
  • [38] Hardy-Sobolev inequalities for double phase functionals
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    [J]. HOKKAIDO MATHEMATICAL JOURNAL, 2023, 52 (02) : 331 - 352
  • [39] Blow-up solutions for Hardy–Sobolev equations on compact Riemannian manifolds
    Wenjing Chen
    [J]. Journal of Fixed Point Theory and Applications, 2018, 20
  • [40] Sobolev type inequalities on Riemannian manifolds
    Adriano, Levi
    Xia, Changyu
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (01) : 372 - 383