Hardy-Sobolev inequalities for double phase functionals

被引:2
|
作者
Mizuta, Yoshihiro [1 ]
Shimomura, Tetsu [2 ]
机构
[1] Hiroshima Univ, Dept Math, Grad Sch Adv Sci & Engn, Higashihiroshima 7398521, Japan
[2] Hiroshima Univ, Dept Math, Grad Sch Humanities & Social Sci, Higashihiroshima 7398524, Japan
关键词
Hardy-Sobolev inequality; double phase functionals; BOUNDARY-REGULARITY; MINIMIZERS;
D O I
10.14492/hokmj/2021-544
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our aim in this note is to establish Hardy-Sobolev inequalities in Rn for double phase functionals 4)(x, t) = tp + (b(x)t)4, where 1 < p < q, b(& BULL;) is non-negative and Ho & BULL;lder continuous of order  E (0, 1]. The Sobolev functional of 4) is given by 4)*(x, t) = tp* + (b(x)t)4* , where p* and q* denote the Sobolev exponent of p and q, respectively, that is, 1/p* = 1/p - 1/n and 1/q* = 1/q - 1/n.
引用
收藏
页码:331 / 352
页数:22
相关论文
共 50 条
  • [1] Hardy-Sobolev inequalities in the unit ball for double phase functionals
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 501 (01)
  • [2] HARDY-SOBOLEV INEQUALITIES IN THE HALF-SPACE FOR DOUBLE PHASE FUNCTIONALS
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (06) : 2159 - 2169
  • [3] Hardy-Sobolev inequalities and boundary growth of Sobolev functions for double phase functionals on the half space
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    [J]. RICERCHE DI MATEMATICA, 2024, 73 (04) : 1707 - 1723
  • [4] Sharp trace Hardy-Sobolev inequalities and fractional Hardy-Sobolev inequalities
    Tzirakis, Konstantinos
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (12) : 4513 - 4539
  • [5] HARDY AND SOBOLEV INEQUALITIES FOR DOUBLE PHASE FUNCTIONALS ON THE UNIT BALL
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2022, 25 (02): : 319 - 333
  • [6] ON INEQUALITIES OF HARDY-SOBOLEV TYPE
    Balinsky, A.
    Evans, W. D.
    Hundertmark, D.
    Lewis, R. T.
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2008, 2 (02): : 94 - 106
  • [7] Sharp Hardy-Sobolev inequalities
    Filippas, S
    Maz'ya, VG
    Tertikas, A
    [J]. COMPTES RENDUS MATHEMATIQUE, 2004, 339 (07) : 483 - 486
  • [8] Hardy-Sobolev inequalities in a cone
    Nazarov A.I.
    [J]. Journal of Mathematical Sciences, 2006, 132 (4) : 419 - 427
  • [9] Critical Hardy-Sobolev inequalities
    Filippas, S.
    Maz'ya, V.
    Terfikas, A.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 87 (01): : 37 - 56
  • [10] Hardy-sobolev interpolation inequalities
    Dietze, Charlotte
    Nam, Phan Thanh
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (07)