Critical Hardy-Sobolev inequalities

被引:63
|
作者
Filippas, S. [1 ]
Maz'ya, V.
Terfikas, A.
机构
[1] Univ Crete, Dept Appl Math, Iraklion 71409, Greece
[2] FORTH, Inst Appl & Computat Math, Iraklion 71110, Greece
[3] Univ Liverpool, Dept Math Sci, Liverpool L69 72L, Merseyside, England
[4] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[5] Univ Crete, Dept Math, Iraklion 71409, Greece
来源
关键词
Hardy inequality; Sobolev inequality; distance function; critical exponent; convexity; isoperimetric inequality;
D O I
10.1016/j.matpur.2006.10.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider Hardy inequalities in R-n, n >= 3, with best constant that involve either distance to the boundary or distance to a surface of co-dimension k < n, and we show that they can still be improved by adding a multiple of a whole range of critical norms that at the extreme case become precisely the critical Sobolev norm. (C) 2006 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:37 / 56
页数:20
相关论文
共 50 条
  • [1] Sharp trace Hardy-Sobolev inequalities and fractional Hardy-Sobolev inequalities
    Tzirakis, Konstantinos
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (12) : 4513 - 4539
  • [2] ON INEQUALITIES OF HARDY-SOBOLEV TYPE
    Balinsky, A.
    Evans, W. D.
    Hundertmark, D.
    Lewis, R. T.
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2008, 2 (02): : 94 - 106
  • [3] Sharp Hardy-Sobolev inequalities
    Filippas, S
    Maz'ya, VG
    Tertikas, A
    [J]. COMPTES RENDUS MATHEMATIQUE, 2004, 339 (07) : 483 - 486
  • [4] Hardy-Sobolev inequalities in a cone
    Nazarov A.I.
    [J]. Journal of Mathematical Sciences, 2006, 132 (4) : 419 - 427
  • [5] Hardy-sobolev interpolation inequalities
    Dietze, Charlotte
    Nam, Phan Thanh
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (07)
  • [6] Hardy-Sobolev Inequalities with Dunkl Weights
    Anh Dao Nguyen
    Duy Nguyen Tuan
    Nguyen Lam Hoang
    Van Phong Nguyen
    [J]. ACTA MATHEMATICA VIETNAMICA, 2023, 48 (01) : 133 - 149
  • [7] Missing terms in Hardy-Sobolev inequalities
    Detalla, A
    Horiuchi, T
    Ando, H
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2004, 80 (08) : 160 - 165
  • [8] On the best constant of Hardy-Sobolev inequalities
    Adimurthi
    Filippas, Stathis
    Tertikas, Achilles
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (08) : 2826 - 2833
  • [9] Remarks on inequalities of Hardy-Sobolev Type
    Ying-Xiong Xiao
    [J]. Journal of Inequalities and Applications, 2011
  • [10] Hardy-Sobolev inequalities and hyperbolic symmetry
    Castorina, D.
    Fabbri, I.
    Mancini, G.
    Sandeep, K.
    [J]. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2008, 19 (03) : 189 - 197