Hardy-Sobolev inequalities for double phase functionals

被引:2
|
作者
Mizuta, Yoshihiro [1 ]
Shimomura, Tetsu [2 ]
机构
[1] Hiroshima Univ, Dept Math, Grad Sch Adv Sci & Engn, Higashihiroshima 7398521, Japan
[2] Hiroshima Univ, Dept Math, Grad Sch Humanities & Social Sci, Higashihiroshima 7398524, Japan
关键词
Hardy-Sobolev inequality; double phase functionals; BOUNDARY-REGULARITY; MINIMIZERS;
D O I
10.14492/hokmj/2021-544
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our aim in this note is to establish Hardy-Sobolev inequalities in Rn for double phase functionals 4)(x, t) = tp + (b(x)t)4, where 1 < p < q, b(& BULL;) is non-negative and Ho & BULL;lder continuous of order  E (0, 1]. The Sobolev functional of 4) is given by 4)*(x, t) = tp* + (b(x)t)4* , where p* and q* denote the Sobolev exponent of p and q, respectively, that is, 1/p* = 1/p - 1/n and 1/q* = 1/q - 1/n.
引用
收藏
页码:331 / 352
页数:22
相关论文
共 50 条