Maximal characterization of Hardy-Sobolev spaces on manifolds

被引:0
|
作者
Badr, N. [1 ]
Dafni, G. [2 ]
机构
[1] Univ Lyon 1, CNRS, Inst Camille Jordan, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
[2] Concordia Univ, Dept Math & Stat, Montreal, PQ H3G 1M8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
DOMAINS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a complete non-compact Riemannian manifold with a doubling measure and admitting a Poincare inequality. In the present paper, we identify the Sobolev space M-1(1), introduced by Hajlasz, with a new Hardy-Sobolev space defined by requiring the integrability of a certain maximal function of the gradient. This completes the circle of ideas begun in [4], where M-1(1) was identified with a Hardy-Sobolev space via atomic decomposition.
引用
收藏
页码:13 / +
页数:2
相关论文
共 50 条
  • [1] HARDY-SOBOLEV SPACES AND MAXIMAL FUNCTIONS
    MIYACHI, A
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1990, 42 (01) : 73 - 90
  • [2] Regularity of maximal functions on Hardy-Sobolev spaces
    Perez, Carlos
    Picon, Tiago
    Saari, Olli
    Sousa, Mateus
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2018, 50 (06) : 1007 - 1015
  • [3] Interpolation along manifolds in Hardy-Sobolev spaces
    J. Bruna
    J. M. Ortega
    [J]. The Journal of Geometric Analysis, 1997, 7 (1): : 17 - 45
  • [4] Hardy-Sobolev spaces and their multipliers
    Cao GuangFu
    He Li
    [J]. SCIENCE CHINA-MATHEMATICS, 2014, 57 (11) : 2361 - 2368
  • [5] On multipliers for Hardy-Sobolev spaces
    Beatrous, Frank
    Burbea, Jacob
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (06) : 2125 - 2133
  • [6] Hardy-Sobolev spaces and their multipliers
    GuangFu Cao
    Li He
    [J]. Science China Mathematics, 2014, 57 : 2361 - 2368
  • [7] Multipliers in Hardy-Sobolev Spaces
    Joaquín M. Ortega
    Joan Fàbrega
    [J]. Integral Equations and Operator Theory, 2006, 55 : 535 - 560
  • [8] Hardy-Sobolev spaces and their multipliers
    CAO GuangFu
    HE Li
    [J]. Science China Mathematics, 2014, 57 (11) : 2361 - 2368
  • [9] Multipliers in Hardy-Sobolev spaces
    Ortega, Joaquin M.
    Fabrega, Joan
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 55 (04) : 535 - 560
  • [10] Fredholmness of multipliers on Hardy-Sobolev spaces
    Cao, Guangfu
    He, Li
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 418 (01) : 1 - 10