A sharp Hardy–Sobolev inequality with boundary term and applications

被引:0
|
作者
Jonison L. Carvalho
Marcelo F. Furtado
Everaldo S. Medeiros
机构
[1] Universidade Federal da Paraíba,Departamento de Matemática
[2] Universidade de Brasília,Departamento de Matemática
关键词
Hardy–Sobolev inequality; Weighted Sobolev embedding; Trudinger–Moser inequality; Robin boundary condition; 35J66;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we state a Hardy–Sobolev type inequality with boundary terms in a borderline case. As an application, we investigate the existence of solutions for a class of zero-mass quasilinear elliptic problem of the form -div(a(x)|∇u|N-2∇u)=k(x)f(u)inΩ,a(x)|∇u|N-2∇u·ν+|u|N-2u=0on∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{rcllr} -\text {div}(a(x)|\nabla u|^{N-2}\nabla u) = k(x)f(u) &{}\text{ in } \Omega ,\\ a(x)|\nabla u|^{N-2}\left( \nabla u\cdot \nu \right) +|u|^{N-2}u=0 &{}\text{ on } \partial \Omega , \end{array} \right. \end{aligned}$$\end{document}where Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}^N$$\end{document}, N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \ge 2$$\end{document}, is an exterior domain, the weight functions a, k satisfy some growth conditions and the nonlinearity f has critical exponential growth.
引用
收藏
相关论文
共 50 条
  • [1] A sharp Hardy-Sobolev inequality with boundary term and applications
    Carvalho, Jonison L.
    Furtado, Marcelo F.
    Medeiros, Everaldo S.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 29 (01):
  • [2] Inversion positivity and the sharp Hardy–Littlewood–Sobolev inequality
    Rupert L. Frank
    Elliott H. Lieb
    Calculus of Variations and Partial Differential Equations, 2010, 39 : 85 - 99
  • [3] Sharp reversed Hardy–Littlewood–Sobolev inequality on Rn
    Quốc Anh Ngô
    Van Hoang Nguyen
    Israel Journal of Mathematics, 2017, 220 : 189 - 223
  • [4] On the sharp Hardy inequality in Sobolev-Slobodeckii spaces
    Bianchi, Francesca
    Brasco, Lorenzo
    Zagati, Anna Chiara
    MATHEMATISCHE ANNALEN, 2024, 390 (01) : 493 - 555
  • [5] Sharp Hardy and Hardy-Sobolev inequalities with point singularities on the boundary
    Barbatis, G.
    Filippas, S.
    Tertikas, A.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 117 : 146 - 184
  • [6] Inversion positivity and the sharp Hardy-Littlewood-Sobolev inequality
    Frank, Rupert L.
    Lieb, Elliott H.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 39 (1-2) : 85 - 99
  • [7] On a Hardy-Sobolev-type inequality and applications
    Carvalho, Jonison L.
    Furtado, Marcelo F.
    Medeiros, Everaldo S.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (10)
  • [8] Sharp Sobolev inequality involving a critical nonlinearity on a boundary
    Chabrowski, J
    Yang, JF
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2005, 25 (01) : 135 - 153
  • [9] Sharp reversed Hardy-Littlewood-Sobolev inequality on R n
    Quoc Anh Ngo
    Van Hoang Nguyen
    ISRAEL JOURNAL OF MATHEMATICS, 2017, 220 (01) : 189 - 223
  • [10] Sharp constants in the doubly weighted Hardy-Littlewood-Sobolev inequality
    WU Di
    SHI ZuoShunHua
    YAN DunYan
    ScienceChina(Mathematics), 2014, 57 (05) : 963 - 970