Low-Regularity Integrator for the Davey–Stewartson II System

被引:0
|
作者
Cui Ning
Xiaomin Kou
Yaohong Wang
机构
[1] Guangdong University of Finance,School of Financial Mathematics and Statistics
[2] Tianjin University,Center for Applied Mathematics
来源
关键词
Hyperbolic–elliptic Davey–Stewartson system; Low-regularity integrator; First order convergence;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Davey–Stewartson system in the hyperbolic–elliptic case (DS-II) in two dimensional case. It is a mass-critical equation, and was proved recently by Nachman et al. (Invent Math 220(2):395–451, 2020) the global well-posedness and scattering in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}. In this paper, we give the numerical study on this model and construct a first order low-regularity integrator for the DS-II in the periodic case. It only requires the boundedness of one additional derivative of the solution to get the first order convergence. The Fast Fourier Transform is exploited to speed up the numerical implementation. By rigorous error analysis, we prove that the numerical scheme provides first order convergence in Hγ(T2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{\gamma }({\mathbb {T}}^{2})$$\end{document} for rough initial data in Hγ+1(T2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{\gamma +1}({\mathbb {T}}^{2})$$\end{document} with γ>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma > 1$$\end{document}. The optimality of the convergence is conformed by numerical experience.
引用
收藏
相关论文
共 50 条
  • [1] Low-Regularity Integrator for the Davey-Stewartson II System
    Ning, Cui
    Kou, Xiaomin
    Wang, Yaohong
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (01)
  • [2] A LOW-REGULARITY FOURIER INTEGRATOR FOR THE DAVEY-STEWARTSON II SYSTEM WITH ALMOST MASS CONSERVATION
    Ning, Cui
    Hao, Chenxi
    Wang, Yaohong
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (04) : 1536 - 1549
  • [3] Low-Regularity Integrator for the Davey-Stewartson System: Elliptic-Elliptic Case
    Ning, Cui
    Wang, Yaohong
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2022, 22 (03) : 675 - 684
  • [4] A Fully Discrete Low-Regularity Integrator for the Nonlinear Schrodinger Equation
    Ostermann, Alexander
    Yao, Fangyan
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 91 (01)
  • [5] A symmetric low-regularity integrator for the nonlinear Schrödinger equation
    Bronsard, Yvonne Alama
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 44 (06) : 3648 - 3682
  • [6] A second-order low-regularity integrator for the nonlinear Schrodinger equation
    Ostermann, Alexander
    Wu, Yifei
    Yao, Fangyan
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2022, 2022 (01):
  • [7] AN EMBEDDED EXPONENTIAL-TYPE LOW-REGULARITY INTEGRATOR FOR MKDV EQUATION
    Ning, C. U., I
    Wu, Yifei
    Zhao, Xiaofei
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (03) : 999 - 1025
  • [8] A SYMMETRIC LOW-REGULARITY INTEGRATOR FOR NONLINEAR KLEIN-GORDON EQUATION
    Wang, Yan
    Zhao, Xiaofei
    MATHEMATICS OF COMPUTATION, 2022, 91 (337) : 2215 - 2245
  • [9] A Fully Discrete Low-Regularity Integrator for the Nonlinear Schrödinger Equation
    Alexander Ostermann
    Fangyan Yao
    Journal of Scientific Computing, 2022, 91
  • [10] A FULLY DISCRETE LOW-REGULARITY INTEGRATOR FOR THE KORTEWEG-DE VRIES EQUATION
    Li, Yongsheng
    Yao, Fangyan
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (07) : 1917 - 1935