Low-Regularity Integrator for the Davey–Stewartson II System

被引:0
|
作者
Cui Ning
Xiaomin Kou
Yaohong Wang
机构
[1] Guangdong University of Finance,School of Financial Mathematics and Statistics
[2] Tianjin University,Center for Applied Mathematics
来源
关键词
Hyperbolic–elliptic Davey–Stewartson system; Low-regularity integrator; First order convergence;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Davey–Stewartson system in the hyperbolic–elliptic case (DS-II) in two dimensional case. It is a mass-critical equation, and was proved recently by Nachman et al. (Invent Math 220(2):395–451, 2020) the global well-posedness and scattering in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}. In this paper, we give the numerical study on this model and construct a first order low-regularity integrator for the DS-II in the periodic case. It only requires the boundedness of one additional derivative of the solution to get the first order convergence. The Fast Fourier Transform is exploited to speed up the numerical implementation. By rigorous error analysis, we prove that the numerical scheme provides first order convergence in Hγ(T2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{\gamma }({\mathbb {T}}^{2})$$\end{document} for rough initial data in Hγ+1(T2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{\gamma +1}({\mathbb {T}}^{2})$$\end{document} with γ>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma > 1$$\end{document}. The optimality of the convergence is conformed by numerical experience.
引用
收藏
相关论文
共 50 条
  • [31] Variational approach to the derivation of the Davey-Stewartson system
    Sedletsky, Yu V.
    FLUID DYNAMICS RESEARCH, 2016, 48 (01)
  • [32] Some Results for the Davey-Stewartson System on a Circle
    Chen, Tsai-Jung
    Fang, Yung-Fu
    Hong, Ying-Ji
    PROGRESS IN INDUSTRIAL AND CIVIL ENGINEERING, PTS. 1-5, 2012, 204-208 : 4429 - +
  • [33] ON THE HAMILTONIAN-FORMALISM FOR THE DAVEY-STEWARTSON SYSTEM
    VILLARROEL, J
    ABLOWITZ, MJ
    INVERSE PROBLEMS, 1991, 7 (03) : 451 - 460
  • [34] ON THE EXISTENCE OF STANDING WAVES FOR A DAVEY-STEWARTSON SYSTEM
    CIPOLATTI, R
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (5-6) : 967 - 988
  • [35] Interacting waves of Davey-Stewartson III system
    Tang, Xiao-Yan
    Hao, Xia-Zhi
    Liang, Zu-Feng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (06) : 1311 - 1320
  • [36] On the Davey-Stewartson system with singular initial data
    Villamizar-Roa, E. J.
    Perez-Lopez, J. E.
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (21-22) : 959 - 964
  • [37] Structural instability of a soliton for the Davey-Stewartson II equation
    R. R. Gadyl’shin
    O. M. Kiselev
    Theoretical and Mathematical Physics, 1999, 118 : 278 - 284
  • [38] Breather and lump solutions for nonlocal Davey–Stewartson II equation
    Yan Zhang
    Yinping Liu
    Nonlinear Dynamics, 2019, 96 : 107 - 113
  • [39] Davey-Stewartson system and investigation of the impacts of the nonlinearity
    Esen, Handenur
    Onder, Ismail
    Secer, Aydin
    Ozisik, Muslum
    Bayram, Mustafa
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (02)
  • [40] Standing waves for a generalized Davey-Stewartson system
    Eden, A.
    Erbay, S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (43): : 13435 - 13444