Low-Regularity Integrator for the Davey–Stewartson II System

被引:0
|
作者
Cui Ning
Xiaomin Kou
Yaohong Wang
机构
[1] Guangdong University of Finance,School of Financial Mathematics and Statistics
[2] Tianjin University,Center for Applied Mathematics
来源
关键词
Hyperbolic–elliptic Davey–Stewartson system; Low-regularity integrator; First order convergence;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Davey–Stewartson system in the hyperbolic–elliptic case (DS-II) in two dimensional case. It is a mass-critical equation, and was proved recently by Nachman et al. (Invent Math 220(2):395–451, 2020) the global well-posedness and scattering in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}. In this paper, we give the numerical study on this model and construct a first order low-regularity integrator for the DS-II in the periodic case. It only requires the boundedness of one additional derivative of the solution to get the first order convergence. The Fast Fourier Transform is exploited to speed up the numerical implementation. By rigorous error analysis, we prove that the numerical scheme provides first order convergence in Hγ(T2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{\gamma }({\mathbb {T}}^{2})$$\end{document} for rough initial data in Hγ+1(T2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{\gamma +1}({\mathbb {T}}^{2})$$\end{document} with γ>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma > 1$$\end{document}. The optimality of the convergence is conformed by numerical experience.
引用
收藏
相关论文
共 50 条
  • [11] Optimal convergence of a second-order low-regularity integrator for the KdV equation
    Wu, Yifei
    Zhao, Xiaofei
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (04) : 3499 - 3528
  • [12] A second-order low-regularity integrator for the nonlinear Schrödinger equation
    Alexander Ostermann
    Yifei Wu
    Fangyan Yao
    Advances in Continuous and Discrete Models, 2022
  • [13] An Unfiltered Low-Regularity Integrator for the KdV Equation with Solutions Below H1
    Li, Buyang
    Wu, Yifei
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2025,
  • [14] A SEMI-IMPLICIT EXPONENTIAL LOW-REGULARITY INTEGRATOR FOR THE NAVIER-STOKES EQUATIONS
    Li, Buyang
    Ma, Shu
    Schratz, Katharina
    SIAM Journal on Numerical Analysis, 2022, 60 (04): : 2273 - 2292
  • [15] LOW-REGULARITY SCHRODINGER MAPS
    Ionescu, Alexandru D.
    Kenig, Carlos E.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2006, 19 (11) : 1271 - 1300
  • [16] On a discrete Davey-Stewartson system
    Gegenhasi
    Hu, Xing-Biao
    Levi, Decio
    INVERSE PROBLEMS, 2006, 22 (05) : 1677 - 1688
  • [17] A new second-order low-regularity integrator for the cubic nonlinear Schrodinger equation
    Cao, Jiachuan
    Li, Buyang
    Lin, Yanping
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 44 (03) : 1313 - 1345
  • [18] A SEMI-IMPLICIT EXPONENTIAL LOW-REGULARITY INTEGRATOR FOR THE NAVIER-STOKES EQUATIONS
    LI, Buyang
    Ma, Shu
    Schratz, Katharina
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (04) : 2273 - 2292
  • [19] CONSERVATION-LAWS OF THE QUANTIZED DAVEY-STEWARTSON-II SYSTEM
    PANG, GD
    PHYSICS LETTERS A, 1993, 173 (03) : 228 - 232
  • [20] A SECOND-ORDER EMBEDDED LOW-REGULARITY INTEGRATOR FOR THE QUADRATIC NONLINEAR SCHRODINGER EQUATION ON TORUS
    Yao, Fangyan
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2022, 19 (05) : 656 - 668