Low-Regularity Integrator for the Davey–Stewartson II System

被引:0
|
作者
Cui Ning
Xiaomin Kou
Yaohong Wang
机构
[1] Guangdong University of Finance,School of Financial Mathematics and Statistics
[2] Tianjin University,Center for Applied Mathematics
来源
关键词
Hyperbolic–elliptic Davey–Stewartson system; Low-regularity integrator; First order convergence;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Davey–Stewartson system in the hyperbolic–elliptic case (DS-II) in two dimensional case. It is a mass-critical equation, and was proved recently by Nachman et al. (Invent Math 220(2):395–451, 2020) the global well-posedness and scattering in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}. In this paper, we give the numerical study on this model and construct a first order low-regularity integrator for the DS-II in the periodic case. It only requires the boundedness of one additional derivative of the solution to get the first order convergence. The Fast Fourier Transform is exploited to speed up the numerical implementation. By rigorous error analysis, we prove that the numerical scheme provides first order convergence in Hγ(T2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{\gamma }({\mathbb {T}}^{2})$$\end{document} for rough initial data in Hγ+1(T2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{\gamma +1}({\mathbb {T}}^{2})$$\end{document} with γ>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma > 1$$\end{document}. The optimality of the convergence is conformed by numerical experience.
引用
收藏
相关论文
共 50 条
  • [41] Resonant solutions of the Davey-Stewartson II equation and their dynamics
    Rao, Jiguang
    Mihalache, Dumitru
    He, Jingsong
    Cheng, Yi
    WAVE MOTION, 2024, 127
  • [42] Two remarks on a generalized Davey-Stewartson system
    Eden, A
    Erbay, HA
    Muslu, GM
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (05) : 979 - 986
  • [43] Variational Approach for a Generalized Davey-Stewartson System
    Xu, Lan
    Zhang, Nan
    ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96
  • [44] Dynamics of rogue waves in the Davey-Stewartson II equation
    Ohta, Yasuhiro
    Yang, Jianke
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (10)
  • [45] LOW-REGULARITY INTEGRATORS FOR NONLINEAR DIRAC EQUATIONS
    Schratz, Katharina
    Wang, Yan
    Zhao, Xiaofei
    MATHEMATICS OF COMPUTATION, 2021, 90 (327) : 189 - 214
  • [46] Structural instability of a soliton for the Davey-Stewartson II equation
    Gadyl'shin, RR
    Kiselev, OM
    THEORETICAL AND MATHEMATICAL PHYSICS, 1999, 118 (03) : 278 - 284
  • [47] A fully discrete low-regularity integrator for the 1D periodic cubic nonlinear Schrödinger equation
    Buyang Li
    Yifei Wu
    Numerische Mathematik, 2021, 149 : 151 - 183
  • [48] A constructive low-regularity integrator for the one-dimensional cubic nonlinear Schrodinger equation under Neumann boundary condition
    Bai, Genming
    Li, Buyang
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (06) : 3243 - 3281
  • [49] Asymptotics of a solution of the Davey-Stewartson II system of equations in the soliton-free case
    Kiselev, OM
    DIFFERENTIAL EQUATIONS, 1997, 33 (06) : 815 - 823
  • [50] Multi-solitons for a generalized Davey-Stewartson system
    WANG Zhong
    CUI ShangBin
    Science China(Mathematics), 2017, 60 (04) : 651 - 670