A Fully Discrete Low-Regularity Integrator for the Nonlinear Schrödinger Equation

被引:0
|
作者
Alexander Ostermann
Fangyan Yao
机构
[1] University of Innsbruck,Department of Mathematics
[2] South China University of Technology,School of Mathematical Sciences
来源
关键词
Low regularity; Nonlinear Schrödinger equation; Fully discrete; Fast Fourier transform; Primary 65M12; 65M15; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
For the solution of the one dimensional cubic nonlinear Schrödinger equation on the torus, we propose and analyze a fully discrete low-regularity integrator. The considered scheme is explicit. Its implementation relies on the fast Fourier transform with a complexity of O(NlogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(N\log N)$$\end{document} operations per time step, where N denotes the degrees of freedom in the spatial discretization. We prove that the new scheme provides an O(τ32γ-12-ε+N-γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(\tau ^{\frac{3}{2}\gamma -\frac{1}{2}-\varepsilon }+N^{-\gamma })$$\end{document} error bound in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} for any initial data in Hγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^\gamma $$\end{document}, 12<γ≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}<\gamma \le 1$$\end{document}, where τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} denotes the temporal step size. Numerical examples illustrate this convergence behavior.
引用
收藏
相关论文
共 50 条
  • [1] A symmetric low-regularity integrator for the nonlinear Schrödinger equation
    Bronsard, Yvonne Alama
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 44 (06) : 3648 - 3682
  • [2] A fully discrete low-regularity integrator for the 1D periodic cubic nonlinear Schrödinger equation
    Buyang Li
    Yifei Wu
    Numerische Mathematik, 2021, 149 : 151 - 183
  • [3] A Fully Discrete Low-Regularity Integrator for the Nonlinear Schrodinger Equation
    Ostermann, Alexander
    Yao, Fangyan
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 91 (01)
  • [4] A second-order low-regularity integrator for the nonlinear Schrödinger equation
    Alexander Ostermann
    Yifei Wu
    Fangyan Yao
    Advances in Continuous and Discrete Models, 2022
  • [5] A FULLY DISCRETE LOW-REGULARITY INTEGRATOR FOR THE KORTEWEG-DE VRIES EQUATION
    Li, Yongsheng
    Yao, Fangyan
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (07) : 1917 - 1935
  • [6] A fully discrete low-regularity integrator for the 1D periodic cubic nonlinear Schrodinger equation
    Li, Buyang
    Wu, Yifei
    NUMERISCHE MATHEMATIK, 2021, 149 (01) : 151 - 183
  • [7] A second-order low-regularity integrator for the nonlinear Schrodinger equation
    Ostermann, Alexander
    Wu, Yifei
    Yao, Fangyan
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2022, 2022 (01):
  • [8] A SYMMETRIC LOW-REGULARITY INTEGRATOR FOR NONLINEAR KLEIN-GORDON EQUATION
    Wang, Yan
    Zhao, Xiaofei
    MATHEMATICS OF COMPUTATION, 2022, 91 (337) : 2215 - 2245
  • [9] Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity
    Alexander Ostermann
    Frédéric Rousset
    Katharina Schratz
    Foundations of Computational Mathematics, 2021, 21 : 725 - 765
  • [10] LONG-TIME ERROR BOUNDS OF LOW-REGULARITY INTEGRATORS FOR NONLINEAR SCHRÓDINGER EQUATIONS
    Feng, Yue
    Maierhofer, Georg
    Schratz, Katharina
    MATHEMATICS OF COMPUTATION, 2024, 93 (348) : 1569 - 1598