A Fully Discrete Low-Regularity Integrator for the Nonlinear Schrödinger Equation

被引:0
|
作者
Alexander Ostermann
Fangyan Yao
机构
[1] University of Innsbruck,Department of Mathematics
[2] South China University of Technology,School of Mathematical Sciences
来源
关键词
Low regularity; Nonlinear Schrödinger equation; Fully discrete; Fast Fourier transform; Primary 65M12; 65M15; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
For the solution of the one dimensional cubic nonlinear Schrödinger equation on the torus, we propose and analyze a fully discrete low-regularity integrator. The considered scheme is explicit. Its implementation relies on the fast Fourier transform with a complexity of O(NlogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(N\log N)$$\end{document} operations per time step, where N denotes the degrees of freedom in the spatial discretization. We prove that the new scheme provides an O(τ32γ-12-ε+N-γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(\tau ^{\frac{3}{2}\gamma -\frac{1}{2}-\varepsilon }+N^{-\gamma })$$\end{document} error bound in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} for any initial data in Hγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^\gamma $$\end{document}, 12<γ≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}<\gamma \le 1$$\end{document}, where τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} denotes the temporal step size. Numerical examples illustrate this convergence behavior.
引用
收藏
相关论文
共 50 条
  • [31] Superfluidity versus disorder in the discrete nonlinear Schrödinger equation
    Trombettoni, A.
    Smerzi, A.
    Bishop, A.R.
    Physical Review Letters, 2002, 88 (17) : 173902 - 173902
  • [32] On the symplectic integration of the discrete nonlinear Schrödinger equation with disorder
    E. Gerlach
    J. Meichsner
    C. Skokos
    The European Physical Journal Special Topics, 2016, 225 : 1103 - 1114
  • [33] Convergence problem of Schr?dinger equation and wave equation in low regularity spaces
    Zhang, Yating
    Yan, Wei
    Yan, Xiangqian
    Zhao, Yajuan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 522 (01)
  • [34] Low-Regularity Integrator for the Davey–Stewartson II System
    Cui Ning
    Xiaomin Kou
    Yaohong Wang
    Journal of Scientific Computing, 2024, 99
  • [35] A constructive low-regularity integrator for the one-dimensional cubic nonlinear Schrodinger equation under Neumann boundary condition
    Bai, Genming
    Li, Buyang
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (06) : 3243 - 3281
  • [36] The low energy scattering for nonlinear Schrödinger equation
    Conghui Fang
    Zheng Han
    Revista Matemática Complutense, 2023, 36 : 125 - 140
  • [37] An Unfiltered Low-Regularity Integrator for the KdV Equation with Solutions Below H1
    Li, Buyang
    Wu, Yifei
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2025,
  • [38] Low Regularity Solutions for the General Quasilinear Ultrahyperbolic Schrödinger Equation
    Pineau, Ben
    Taylor, Mitchell A.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2024, 248 (06)
  • [39] Freezing of nonlinear Bloch oscillations in the generalized discrete nonlinear Schrödinger equation
    Cao, F.J.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (3 2): : 036614 - 1
  • [40] Low-regularity solutions for the Ostrovsky equation
    Huo, ZH
    Jia, YL
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2006, 49 : 87 - 100