A Fully Discrete Low-Regularity Integrator for the Nonlinear Schrödinger Equation

被引:0
|
作者
Alexander Ostermann
Fangyan Yao
机构
[1] University of Innsbruck,Department of Mathematics
[2] South China University of Technology,School of Mathematical Sciences
来源
关键词
Low regularity; Nonlinear Schrödinger equation; Fully discrete; Fast Fourier transform; Primary 65M12; 65M15; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
For the solution of the one dimensional cubic nonlinear Schrödinger equation on the torus, we propose and analyze a fully discrete low-regularity integrator. The considered scheme is explicit. Its implementation relies on the fast Fourier transform with a complexity of O(NlogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(N\log N)$$\end{document} operations per time step, where N denotes the degrees of freedom in the spatial discretization. We prove that the new scheme provides an O(τ32γ-12-ε+N-γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(\tau ^{\frac{3}{2}\gamma -\frac{1}{2}-\varepsilon }+N^{-\gamma })$$\end{document} error bound in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} for any initial data in Hγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^\gamma $$\end{document}, 12<γ≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}<\gamma \le 1$$\end{document}, where τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} denotes the temporal step size. Numerical examples illustrate this convergence behavior.
引用
收藏
相关论文
共 50 条
  • [41] Some regularity properties of scattering data for the derivative nonlinear Schrödinger equation
    Weng, Weifang
    Yan, Zhenya
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2025, 77 (05)
  • [42] Low-regularity Schrödinger maps, II: global well-posedness in dimensions d ≥  3
    Alexandru D. Ionescu
    Carlos E. Kenig
    Communications in Mathematical Physics, 2007, 271 : 523 - 559
  • [43] A semi-discrete scheme for the stochastic nonlinear Schrödinger equation
    A. De Bouard
    A. Debussche
    Numerische Mathematik, 2004, 96 : 733 - 770
  • [44] An Integrable Symplectic Map Related to Discrete Nonlinear Schrdinger Equation
    赵静
    周汝光
    CommunicationsinTheoreticalPhysics, 2010, 53 (05) : 799 - 802
  • [45] The Discrete Nonlinear Schrödinger Equation and its Lie Symmetry Reductions
    R Hernández Heredero
    D Levi
    Journal of Nonlinear Mathematical Physics, 2003, 10 (Suppl 2) : 77 - 94
  • [46] The (G′/G)-expansion method for a discrete nonlinear Schrödinger equation
    Sheng Zhang
    Ling Dong
    Jin-Mei Ba
    Ying-Na Sun
    Pramana, 2010, 74 : 207 - 218
  • [47] Periodic Waves of a Discrete Higher Order Nonlinear Schrdinger Equation
    Robert Contete
    K.W. Chow
    CommunicationsinTheoreticalPhysics, 2006, 46 (12) : 961 - 965
  • [48] Closed form Solutions to the Integrable Discrete Nonlinear Schrödinger Equation
    Francesco Demontis
    Cornelis Van Der Mee
    Journal of Nonlinear Mathematical Physics, 2012, 19 : 136 - 157
  • [49] Condensation transition and ensemble inequivalence in the discrete nonlinear Schrödinger equation
    Giacomo Gradenigo
    Stefano Iubini
    Roberto Livi
    Satya N. Majumdar
    The European Physical Journal E, 2021, 44
  • [50] Low-Regularity Integrator for the Davey-Stewartson II System
    Ning, Cui
    Kou, Xiaomin
    Wang, Yaohong
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (01)