A Fully Discrete Low-Regularity Integrator for the Nonlinear Schrödinger Equation

被引:0
|
作者
Alexander Ostermann
Fangyan Yao
机构
[1] University of Innsbruck,Department of Mathematics
[2] South China University of Technology,School of Mathematical Sciences
来源
关键词
Low regularity; Nonlinear Schrödinger equation; Fully discrete; Fast Fourier transform; Primary 65M12; 65M15; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
For the solution of the one dimensional cubic nonlinear Schrödinger equation on the torus, we propose and analyze a fully discrete low-regularity integrator. The considered scheme is explicit. Its implementation relies on the fast Fourier transform with a complexity of O(NlogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(N\log N)$$\end{document} operations per time step, where N denotes the degrees of freedom in the spatial discretization. We prove that the new scheme provides an O(τ32γ-12-ε+N-γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(\tau ^{\frac{3}{2}\gamma -\frac{1}{2}-\varepsilon }+N^{-\gamma })$$\end{document} error bound in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} for any initial data in Hγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^\gamma $$\end{document}, 12<γ≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}<\gamma \le 1$$\end{document}, where τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} denotes the temporal step size. Numerical examples illustrate this convergence behavior.
引用
收藏
相关论文
共 50 条