A FULLY DISCRETE LOW-REGULARITY INTEGRATOR FOR THE KORTEWEG-DE VRIES EQUATION
被引:0
|
作者:
Li, Yongsheng
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Math Sci, Guangzhou 510640, Guangdong, Peoples R ChinaSouth China Univ Technol, Sch Math Sci, Guangzhou 510640, Guangdong, Peoples R China
Li, Yongsheng
[1
]
Yao, Fangyan
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Math Sci, Guangzhou 510640, Guangdong, Peoples R ChinaSouth China Univ Technol, Sch Math Sci, Guangzhou 510640, Guangdong, Peoples R China
Yao, Fangyan
[1
]
机构:
[1] South China Univ Technol, Sch Math Sci, Guangzhou 510640, Guangdong, Peoples R China
The KdV equation;
low regularity;
fully discrete;
fast Fourier transform;
KDV;
D O I:
暂无
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper we propose a fully discrete low-regularity integrator for the Korteweg-de Vries equation on the torus. This is an explicit scheme and can be computed with a complexity of O(NlogN) operations by fast Fourier transform, where N is the degrees of freedom in the spatial discretization. We prove that the scheme is first-order convergent in both time and space variables in H gamma-norm for H gamma +1 initial data under Courant-Friedrichs-Lewy condition N >= 1/tau, where tau denotes the temporal step size. We also carry out numerical experiments that illustrate the convergence behavior.
机构:
South China Univ Technol, Sch Math Sci, Guangzhou 510640, Guangdong, Peoples R ChinaUniv Innsbruck, Dept Math, Technikerstr 13, A-6020 Innsbruck, Austria