A FULLY DISCRETE LOW-REGULARITY INTEGRATOR FOR THE KORTEWEG-DE VRIES EQUATION

被引:0
|
作者
Li, Yongsheng [1 ]
Yao, Fangyan [1 ]
机构
[1] South China Univ Technol, Sch Math Sci, Guangzhou 510640, Guangdong, Peoples R China
关键词
The KdV equation; low regularity; fully discrete; fast Fourier transform; KDV;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose a fully discrete low-regularity integrator for the Korteweg-de Vries equation on the torus. This is an explicit scheme and can be computed with a complexity of O(NlogN) operations by fast Fourier transform, where N is the degrees of freedom in the spatial discretization. We prove that the scheme is first-order convergent in both time and space variables in H gamma-norm for H gamma +1 initial data under Courant-Friedrichs-Lewy condition N >= 1/tau, where tau denotes the temporal step size. We also carry out numerical experiments that illustrate the convergence behavior.
引用
收藏
页码:1917 / 1935
页数:19
相关论文
共 50 条
  • [21] Discrete Negative Order Potential Korteweg-de Vries Equation
    Zhao, Song-lin
    Sun, Ying-ying
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (12): : 1151 - 1158
  • [22] Error estimate for a fully discrete spectral scheme for Korteweg-de Vries-Kawahara equation
    Koley, Ujjwal
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2012, 10 (01): : 173 - 187
  • [23] STABILITY FOR KORTEWEG-DE VRIES EQUATION
    MCKEAN, HP
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (03) : 347 - 353
  • [24] Recurrence in the Korteweg-de Vries equation?
    Herbst, Ben
    Nieddu, Garrett
    Trubatch, A. David
    NONLINEAR WAVE EQUATIONS: ANALYTIC AND COMPUTATIONAL TECHNIQUES, 2015, 635 : 1 - 12
  • [25] The Korteweg-de Vries equation on the interval
    Hitzazis, Iasonas
    Tsoubelis, Dimitri
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (08)
  • [26] On the stabilization of the Korteweg-de Vries equation
    Komornik, Vilmos
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2010, 28 (02): : 33 - 48
  • [27] On the Modified Korteweg-De Vries Equation
    Hayashi, Nakao
    Naumkin, Pavel
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2001, 4 (03) : 197 - 227
  • [28] GENERALIZED KORTEWEG-DE VRIES EQUATION
    TSUTSUMI, M
    MUKASA, T
    IINO, R
    PROCEEDINGS OF THE JAPAN ACADEMY, 1970, 46 (09): : 921 - &
  • [29] THE KORTEWEG-DE VRIES EQUATION AND BEYOND
    FOKAS, AS
    ACTA APPLICANDAE MATHEMATICAE, 1995, 39 (1-3) : 295 - 305
  • [30] Cosmology and the Korteweg-de Vries equation
    Lidsey, James E.
    PHYSICAL REVIEW D, 2012, 86 (12)