On the Modified Korteweg-De Vries Equation

被引:31
|
作者
Hayashi, Nakao [1 ]
Naumkin, Pavel [2 ]
机构
[1] Tokyo Univ Sci, Dept Appl Math, Tokyo 1628601, Japan
[2] Univ Michoacana, Inst Fis & Matemat, Morelia 58040, Michoacan, Mexico
关键词
modified Korteweg-de Vries equation; large time asymptotics;
D O I
10.1023/A:1012953917956
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the large time asymptotic behavior of solutions to the Cauchy problem for the modified Korteweg-de Vries equation u(t) + a(t)(u(3))(x) + 1/3 u(xxx) = 0, (t, x) epsilon R x R, with initial data u(0, x) = u(0)(x), x epsilon R. We assume that the coefficient a(t) epsilon C-1(R) is real, bounded and slowly varying function, such that vertical bar a'(t)vertical bar <= C < t >(-7/6), where < t > = (1 + t(2))(1/2). We suppose that the initial data are real-valued and small enough, belonging to the weighted Sobolev space H-1,H-1 = {phi epsilon L-2; vertical bar vertical bar root 1 + x(2) root 1 - partial derivative(2)(x)phi vertical bar vertical bar < infinity}. In comparison with the previous paper (Internat. Res. Notices 8 (1999), 395-418), here we exclude the condition that the integral of the initial data u(0) is zero. We prove the time decay estimates (3)root t(2) (3)root < t >vertical bar vertical bar u(t)u(x)(t)vertical bar vertical bar infinity <= C epsilon and < t >(1/3 - 1/3 beta)vertical bar vertical bar u(t)vertical bar vertical bar(beta) <= C epsilon for all t epsilon R, where 4 < beta <= infinity. We also find the asymptotics for large time of the solution in the neighborhood of the self-similar solution.
引用
收藏
页码:197 / 227
页数:31
相关论文
共 50 条
  • [1] MODIFIED KORTEWEG-DE VRIES EQUATION
    ONO, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1974, 37 (03) : 882 - 882
  • [2] STOCHASTIC MODIFIED KORTEWEG-DE VRIES EQUATION
    BLASZAK, M
    ACTA PHYSICA POLONICA A, 1986, 70 (05) : 503 - 515
  • [3] MODIFIED KORTEWEG-DE VRIES EQUATION IN ELECTROHYDRODYNAMICS
    PERELMAN, TL
    FRIDMAN, AK
    ELYASHEV.MM
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1974, 66 (04): : 1316 - 1323
  • [4] ANALYSIS OF A MODIFIED KORTEWEG-DE VRIES EQUATION
    LEO, M
    LEO, RA
    SOLIANI, G
    PROGRESS OF THEORETICAL PHYSICS, 1979, 62 (06): : 1475 - 1466
  • [5] Solutions to the modified Korteweg-de Vries equation
    Zhang, Da-Jun
    Zhao, Song-Lin
    Sun, Ying-Ying
    Zhou, Jing
    REVIEWS IN MATHEMATICAL PHYSICS, 2014, 26 (07)
  • [6] KORTEWEG-DE VRIES EQUATION
    SHABAT, AB
    DOKLADY AKADEMII NAUK SSSR, 1973, 211 (06): : 1310 - 1313
  • [7] KORTEWEG-DE VRIES EQUATION
    TSUTSUMI, M
    PROCEEDINGS OF THE JAPAN ACADEMY, 1975, 51 (06): : 399 - 401
  • [9] Boundary Stabilization of the Korteweg-de Vries Equation and the Korteweg-de Vries-Burgers Equation
    Chaohua Jia
    Bing-Yu Zhang
    Acta Applicandae Mathematicae, 2012, 118 : 25 - 47
  • [10] Numerical simulation of the modified Korteweg-de Vries equation
    Biswas, A.
    Raslan, K. R.
    PHYSICS OF WAVE PHENOMENA, 2011, 19 (02) : 142 - 147