On the Modified Korteweg-De Vries Equation

被引:31
|
作者
Hayashi, Nakao [1 ]
Naumkin, Pavel [2 ]
机构
[1] Tokyo Univ Sci, Dept Appl Math, Tokyo 1628601, Japan
[2] Univ Michoacana, Inst Fis & Matemat, Morelia 58040, Michoacan, Mexico
关键词
modified Korteweg-de Vries equation; large time asymptotics;
D O I
10.1023/A:1012953917956
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the large time asymptotic behavior of solutions to the Cauchy problem for the modified Korteweg-de Vries equation u(t) + a(t)(u(3))(x) + 1/3 u(xxx) = 0, (t, x) epsilon R x R, with initial data u(0, x) = u(0)(x), x epsilon R. We assume that the coefficient a(t) epsilon C-1(R) is real, bounded and slowly varying function, such that vertical bar a'(t)vertical bar <= C < t >(-7/6), where < t > = (1 + t(2))(1/2). We suppose that the initial data are real-valued and small enough, belonging to the weighted Sobolev space H-1,H-1 = {phi epsilon L-2; vertical bar vertical bar root 1 + x(2) root 1 - partial derivative(2)(x)phi vertical bar vertical bar < infinity}. In comparison with the previous paper (Internat. Res. Notices 8 (1999), 395-418), here we exclude the condition that the integral of the initial data u(0) is zero. We prove the time decay estimates (3)root t(2) (3)root < t >vertical bar vertical bar u(t)u(x)(t)vertical bar vertical bar infinity <= C epsilon and < t >(1/3 - 1/3 beta)vertical bar vertical bar u(t)vertical bar vertical bar(beta) <= C epsilon for all t epsilon R, where 4 < beta <= infinity. We also find the asymptotics for large time of the solution in the neighborhood of the self-similar solution.
引用
收藏
页码:197 / 227
页数:31
相关论文
共 50 条
  • [41] Periodic and rational solutions of modified Korteweg-de Vries equation
    Chowdury, Amdad
    Ankiewicz, Adrian
    Akhmediev, Nail
    EUROPEAN PHYSICAL JOURNAL D, 2016, 70 (05): : 1 - 7
  • [42] Multisymplectic Schemes for the Complex Modified Korteweg-de Vries Equation
    Aydin, A.
    Karasoezen, B.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 60 - +
  • [43] Soliton surfaces for complex modified Korteweg-de Vries equation
    Bauyrzhan, Gulnur
    Yesmakhanova, Kuralay
    Yerzhanov, Koblandy
    Ybyraiymova, Sveta
    8TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCE, 2019, 1391
  • [44] Periodic and rational solutions of modified Korteweg-de Vries equation
    Amdad Chowdury
    Adrian Ankiewicz
    Nail Akhmediev
    The European Physical Journal D, 2016, 70
  • [45] BACKLUND TRANSFORMATION FOR SOLUTIONS OF MODIFIED KORTEWEG-DE VRIES EQUATION
    WADATI, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1974, 36 (05) : 1498 - 1498
  • [46] Unconditional uniqueness for the modified Korteweg-de Vries equation on the line
    Molinet, Luc
    Pilod, Didier
    Vento, Stephan
    REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (04) : 1563 - 1608
  • [47] Inverse Scattering and Loaded Modified Korteweg-de Vries Equation
    Feckan, Michal
    Urazboev, Gayrat
    Baltaeva, Iroda
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2022, 15 (02): : 174 - 183
  • [48] Modified Korteweg-de Vries surfaces
    Tek, Suleyman
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (01)
  • [49] Matrix Korteweg-de Vries and modified Korteweg-de Vries hierarchies: Noncommutative soliton solutions
    Carillo, Sandra
    Schiebold, Cornelia
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (05)
  • [50] Noncommutative Korteweg-de Vries and modified Korteweg-de Vries hierarchies via recursion methods
    Carillo, Sandra
    Schiebold, Cornelia
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (07)