Noncommutative Korteweg-de Vries and modified Korteweg-de Vries hierarchies via recursion methods

被引:26
|
作者
Carillo, Sandra [1 ]
Schiebold, Cornelia [2 ]
机构
[1] Sapienza Univ Rome, Dipartimento Metodi & Modelli Matemat Sci Applica, I-00161 Rome, Italy
[2] Mid Sweden Univ, Dept Nat Sci Engn & Math, S-85170 Sundsvall, Sweden
关键词
Korteweg-de Vries equation; mathematical operators; matrix algebra; nonlinear differential equations; solitons; HARRY-DYM EQUATION; NONLINEAR EQUATIONS; EVOLUTION-EQUATIONS; TRANSFORMATION;
D O I
10.1063/1.3155080
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Here, noncommutative hierarchies of nonlinear equations are studied. They represent a generalization to the operator level of corresponding hierarchies of scalar equations, which can be obtained from the operator ones via a suitable projection. A key tool is the application of Baumlcklund transformations to relate different operator-valued hierarchies. Indeed, in the case when hierarchies in 1+1-dimensions are considered, a "Baumlcklund chart" depicts links relating, in particular, the Korteweg-de Vries (KdV) to the modified KdV (mKdV) hierarchy. Notably, analogous links connect the hierarchies of operator equations. The main result is the construction of an operator soliton solution depending on an infinite-dimensional parameter. To start with, the potential KdV hierarchy is considered. Then Baumlcklund transformations are exploited to derive solution formulas in the case of KdV and mKdV hierarchies. It is remarked that hierarchies of matrix equations, of any dimension, are also incorporated in the present framework.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Matrix Korteweg-de Vries and modified Korteweg-de Vries hierarchies: Noncommutative soliton solutions
    Carillo, Sandra
    Schiebold, Cornelia
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (05)
  • [2] Numerical inverse scattering for the Korteweg-de Vries and modified Korteweg-de Vries equations
    Trogdon, Thomas
    Olver, Sheehan
    Deconinck, Bernard
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (11) : 1003 - 1025
  • [3] HIERARCHIES OF KORTEWEG-DE VRIES TYPE EQUATIONS
    SVININ, AK
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (02) : 814 - 827
  • [4] Modified Korteweg-de Vries surfaces
    Tek, Suleyman
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (01)
  • [5] On the Modified Korteweg-De Vries Equation
    Hayashi, Nakao
    Naumkin, Pavel
    [J]. MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2001, 4 (03) : 197 - 227
  • [6] MODIFIED KORTEWEG-DE VRIES EQUATION
    ONO, H
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1974, 37 (03) : 882 - 882
  • [7] Integrability of reductions of the discrete Korteweg-de Vries and potential Korteweg-de Vries equations
    Hone, A. N. W.
    van der Kamp, P. H.
    Quispel, G. R. W.
    Tran, D. T.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2154):
  • [8] Korteweg-de Vries surfaces
    Gurses, Metin
    Tek, Suleyman
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 : 11 - 22
  • [9] KORTEWEG-DE VRIES EQUATION
    SHABAT, AB
    [J]. DOKLADY AKADEMII NAUK SSSR, 1973, 211 (06): : 1310 - 1313
  • [10] New Positon, Negaton, and Complexiton Solutions for a Coupled Korteweg-de Vries - Modified Korteweg-de Vries System
    Hu, Hengchun
    Yang, Mingyuan
    Zhang, Ling
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2012, 67 (6-7): : 347 - 354