A FULLY DISCRETE LOW-REGULARITY INTEGRATOR FOR THE KORTEWEG-DE VRIES EQUATION

被引:0
|
作者
Li, Yongsheng [1 ]
Yao, Fangyan [1 ]
机构
[1] South China Univ Technol, Sch Math Sci, Guangzhou 510640, Guangdong, Peoples R China
关键词
The KdV equation; low regularity; fully discrete; fast Fourier transform; KDV;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose a fully discrete low-regularity integrator for the Korteweg-de Vries equation on the torus. This is an explicit scheme and can be computed with a complexity of O(NlogN) operations by fast Fourier transform, where N is the degrees of freedom in the spatial discretization. We prove that the scheme is first-order convergent in both time and space variables in H gamma-norm for H gamma +1 initial data under Courant-Friedrichs-Lewy condition N >= 1/tau, where tau denotes the temporal step size. We also carry out numerical experiments that illustrate the convergence behavior.
引用
收藏
页码:1917 / 1935
页数:19
相关论文
共 50 条
  • [31] GENERALIZATIONS OF THE KORTEWEG-DE VRIES EQUATION
    SAUT, JC
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1979, 58 (01): : 21 - 61
  • [32] The Korteweg-de Vries equation on an interval
    Himonas, A. Alexandrou
    Mantzavinos, Dionyssios
    Yan, Fangchi
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (05)
  • [33] ON THE (GENERALIZED) KORTEWEG-DE VRIES EQUATION
    KENIG, CE
    PONCE, G
    VEGA, L
    DUKE MATHEMATICAL JOURNAL, 1989, 59 (03) : 585 - 610
  • [34] MODIFIED KORTEWEG-DE VRIES EQUATION
    ONO, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1974, 37 (03) : 882 - 882
  • [35] A fully discrete low-regularity integrator for the 1D periodic cubic nonlinear Schrodinger equation
    Li, Buyang
    Wu, Yifei
    NUMERISCHE MATHEMATIK, 2021, 149 (01) : 151 - 183
  • [36] Gevrey Class Regularity of a Semigroup Associated with a Nonlinear Korteweg-de Vries Equation
    Chu, Jixun
    Coron, Jean-Michel
    Shang, Peipei
    Tang, Shu-Xia
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2018, 39 (02) : 201 - 212
  • [37] Gevrey Class Regularity of a Semigroup Associated with a Nonlinear Korteweg-de Vries Equation
    Jixun CHU
    Jean-Michel CORON
    Peipei SHANG
    Shu-Xia TANG
    ChineseAnnalsofMathematics,SeriesB, 2018, (02) : 201 - 212
  • [38] Discrete artificial boundary conditions for the linearized Korteweg-de Vries equation
    Besse, C.
    Ehrhardt, M.
    Lacroix-Violet, I.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (05) : 1455 - 1484
  • [39] ON SOME HIGH-ORDER ACCURATE FULLY DISCRETE GALERKIN METHODS FOR THE KORTEWEG-DE VRIES EQUATION
    DOUGALIS, VA
    KARAKASHIAN, OA
    MATHEMATICS OF COMPUTATION, 1985, 45 (172) : 329 - 345
  • [40] Gevrey Class Regularity of a Semigroup Associated with a Nonlinear Korteweg-de Vries Equation
    Jixun Chu
    Jean-Michel Coron
    Peipei Shang
    Shu-Xia Tang
    Chinese Annals of Mathematics, Series B, 2018, 39 : 201 - 212