Value at risk estimation by quantile regression and kernel estimator

被引:5
|
作者
Huang A.Y. [1 ]
机构
[1] College of Management, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan
关键词
Kernel estimator; Quantile regression; Value at risk;
D O I
10.1007/s11156-012-0308-x
中图分类号
学科分类号
摘要
Risk management has attracted a great deal of attention, and Value at Risk (VaR) has emerged as a particularly popular and important measure for detecting the market risk of financial assets. The quantile regression method can generate VaR estimates without distributional assumptions; however, empirical evidence has shown the approach to be ineffective at evaluating the real level of downside risk in out-of-sample examination. This paper proposes a process in VaR estimation with methods of quantile regression and kernel estimator which applies the nonparametric technique with extreme quantile forecasts to realize a tail distribution and locate the VaR estimates. Empirical application of worldwide stock indices with 29 years of data is conducted and confirms the proposed approach outperforms others and provides highly reliable estimates. © 2012 Springer Science+Business Media, LLC.
引用
收藏
页码:225 / 251
页数:26
相关论文
共 50 条
  • [41] An implementation for regression quantile estimation
    Yee, TW
    COMPSTAT 2002: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2002, : 3 - 14
  • [42] Adaptive Kernel Quantile Regression for Anomaly Detection
    Moriguchi, Hiroyuki
    Takeuchi, Ichiro
    Karasuyama, Masayuki
    Horikawa, Shin-ichi
    Ohta, Yoshikatsu
    Kodama, Tetsuji
    Naruse, Hiroshi
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2009, 13 (03) : 230 - 236
  • [43] Consistency of kernel-based quantile regression
    Christmann, Andreas
    Steinwart, Ingo
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2008, 24 (02) : 171 - 183
  • [44] Quantile regression in reproducing kernel Hilbert spaces
    Li, Youjuan
    Liu, Yufeng
    Zhu, Ji
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (477) : 255 - 268
  • [45] Garrotized kernel machine in semiparametric quantile regression
    Zhao, Xinyi
    Rong, Yaohua
    Tian, Maozai
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2025, 54 (01) : 284 - 313
  • [46] DEFICIENCY OF THE SAMPLE QUANTILE ESTIMATOR WITH RESPECT TO KERNEL QUANTILE ESTIMATORS FOR CENSORED-DATA
    XIANG, XJ
    ANNALS OF STATISTICS, 1995, 23 (03): : 836 - 854
  • [47] A quantile regression estimator for interval-censored data
    Frumento, Paolo
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2023, 19 (01): : 81 - 96
  • [48] Bootstrap variance estimation for Nadaraya quantile estimator
    K. Y. Cheung
    Stephen M. S. Lee
    TEST, 2010, 19 : 131 - 145
  • [49] Kernel Quantile Estimator with ICI Adaptive Bandwidth Selection Technique
    Jie Yu FAN
    Man Lai TANG
    Mao Zai TIAN
    ActaMathematicaSinica(EnglishSeries), 2014, 30 (04) : 710 - 722
  • [50] Bootstrap variance estimation for Nadaraya quantile estimator
    Cheung, K. Y.
    Lee, Stephen M. S.
    TEST, 2010, 19 (01) : 131 - 145