Quantile regression in reproducing kernel Hilbert spaces

被引:139
|
作者
Li, Youjuan [1 ]
Liu, Yufeng
Zhu, Ji
机构
[1] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
[2] Univ N Carolina, Dept Stat & Operat Res, Carolina Ctr Genome Sci, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会;
关键词
degrees of freedom; metric entropy; model selection; quadratic programming; quantile regression; reproducing kernel; Hilbert space;
D O I
10.1198/016214506000000979
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article we consider quantile regression in reproducing kernel Hilbert spaces, which we call kernel quantile regression (KQR). We make three contributions: (1) we propose an efficient algorithm that computes the entire solution path of the KQR, with essentially the same computational cost as fitting one KQR model; (2) we derive a simple formula for the effective dimension of the KQR model, which allows convenient selection of the regularization parameter; and (3) we develop an asymptotic theory for the KQR model.
引用
收藏
页码:255 / 268
页数:14
相关论文
共 50 条
  • [1] On Quantile Regression in Reproducing Kernel Hilbert Spaces with the Data Sparsity Constraint
    Zhang, Chong
    Liu, Yufeng
    Wu, Yichao
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [2] Optimal prediction of quantile functional linear regression in reproducing kernel Hilbert spaces
    Li, Rui
    Lu, Wenqi
    Zhu, Zhongyi
    Lian, Heng
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2021, 211 : 162 - 170
  • [3] Fast quantile regression in reproducing kernel Hilbert space
    Zheng, Songfeng
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2022, 51 (02) : 568 - 588
  • [4] Fast quantile regression in reproducing kernel Hilbert space
    Songfeng Zheng
    [J]. Journal of the Korean Statistical Society, 2022, 51 : 568 - 588
  • [5] Approximate nonparametric quantile regression in reproducing kernel Hilbert spaces via random projection
    Zhang, Fode
    Li, Rui
    Lian, Heng
    [J]. INFORMATION SCIENCES, 2021, 547 : 244 - 254
  • [6] Optimal prediction for high-dimensional functional quantile regression in reproducing kernel Hilbert spaces
    Yang, Guangren
    Liu, Xiaohui
    Lian, Heng
    [J]. JOURNAL OF COMPLEXITY, 2021, 66
  • [7] Reproducing Kernel Hilbert Spaces for Penalized Regression: A Tutorial
    Nosedal-Sanchez, Alvaro
    Storlie, Curtis B.
    Lee, Thomas C. M.
    Christensen, Ronald
    [J]. AMERICAN STATISTICIAN, 2012, 66 (01): : 50 - 60
  • [8] Flexible Expectile Regression in Reproducing Kernel Hilbert Spaces
    Yang, Yi
    Zhang, Teng
    Zou, Hui
    [J]. TECHNOMETRICS, 2018, 60 (01) : 26 - 35
  • [9] On the Vγ dimension for regression in Reproducing Kernel Hilbert Spaces
    Evgeniou, T
    Pontil, M
    [J]. ALGORITHMIC LEARNING THEORY, PROCEEDINGS, 1999, 1720 : 106 - 117
  • [10] Functional quantile regression with missing data in reproducing kernel Hilbert space
    Yu, Xiao-Ge
    Liang, Han-Ying
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024,