Value at risk estimation by quantile regression and kernel estimator

被引:5
|
作者
Huang A.Y. [1 ]
机构
[1] College of Management, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan
关键词
Kernel estimator; Quantile regression; Value at risk;
D O I
10.1007/s11156-012-0308-x
中图分类号
学科分类号
摘要
Risk management has attracted a great deal of attention, and Value at Risk (VaR) has emerged as a particularly popular and important measure for detecting the market risk of financial assets. The quantile regression method can generate VaR estimates without distributional assumptions; however, empirical evidence has shown the approach to be ineffective at evaluating the real level of downside risk in out-of-sample examination. This paper proposes a process in VaR estimation with methods of quantile regression and kernel estimator which applies the nonparametric technique with extreme quantile forecasts to realize a tail distribution and locate the VaR estimates. Empirical application of worldwide stock indices with 29 years of data is conducted and confirms the proposed approach outperforms others and provides highly reliable estimates. © 2012 Springer Science+Business Media, LLC.
引用
收藏
页码:225 / 251
页数:26
相关论文
共 50 条
  • [21] On kernel smoothing for extremal quantile regression
    Daouia, Abdelaati
    Gardes, Laurent
    Girard, Stephane
    BERNOULLI, 2013, 19 (5B) : 2557 - 2589
  • [22] Kernel Estimation of Quantile Sensitivities
    Liu, Guangwu
    Hong, Liu Jeff
    NAVAL RESEARCH LOGISTICS, 2009, 56 (06) : 511 - 525
  • [23] Kernel estimation of extreme regression risk measures
    El Methni, Jonathan
    Des, Laurent Gar
    Girard, Stephan
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (01): : 359 - 398
  • [24] Kernel estimation for quantile sensitivities
    Liu, Guangwu
    Hong, L. Jeff
    PROCEEDINGS OF THE 2007 WINTER SIMULATION CONFERENCE, VOLS 1-5, 2007, : 920 - 927
  • [25] An alternative estimator for the censored quantile regression model
    Buchinsky, M
    Hahn, JY
    ECONOMETRICA, 1998, 66 (03) : 653 - 671
  • [26] L2 consistency of the kernel quantile estimator
    Youndje, E.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (17) : 6111 - 6125
  • [27] Nonparametric estimation of regression level sets using kernel plug-in estimator
    Laloe, T.
    Servien, R.
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2013, 42 (03) : 301 - 311
  • [28] Robust nonparametric kernel regression estimator
    Zhao, Ge
    Ma, Yanyuan
    STATISTICS & PROBABILITY LETTERS, 2016, 116 : 72 - 79
  • [29] RANDOM DESIGN KERNEL REGRESSION ESTIMATOR
    Deshpande, Bhargavi
    Bhat, Sharada, V
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2019, 15 (01): : 11 - 17
  • [30] Nonparametric estimation of regression level sets using kernel plug-in estimator
    T. Laloë
    R. Servien
    Journal of the Korean Statistical Society, 2013, 42 : 301 - 311