Kernel Estimation of Quantile Sensitivities

被引:27
|
作者
Liu, Guangwu [1 ]
Hong, Liu Jeff [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Ind Engn & Logist Management, Hong Kong, Hong Kong, Peoples R China
关键词
quantile; sensitivity analysis; kernel method; simulation; TIME-SERIES; REGRESSION;
D O I
10.1002/nav.20358
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Quantiles, also known as value-at-risks in the financial industry, are important measures of random performances. Quantile sensitivities provide information on how changes in input parameters affect Output quantiles. They are very Useful ill risk management. In this article. we study the estimation of quantile sensitivities using stochastic simulation. We propose a kernel estimator and prove that it is consistent and asymptotically normally distributed for Outputs from both terminating and steady-state simulations. The theoretical analysis and numerical experiments both show that the kernel estimator is more efficient than the hatching estimator of Hong [9]. (C) 2009 Wiley Periodicals, Inc. Naval Research Logistics 56: 511-525, 2009
引用
收藏
页码:511 / 525
页数:15
相关论文
共 50 条
  • [1] Kernel estimation for quantile sensitivities
    Liu, Guangwu
    Hong, L. Jeff
    [J]. PROCEEDINGS OF THE 2007 WINTER SIMULATION CONFERENCE, VOLS 1-5, 2007, : 920 - 927
  • [2] DOUBLE KERNEL ESTIMATION OF SENSITIVITIES
    Elie, Romuald
    [J]. JOURNAL OF APPLIED PROBABILITY, 2009, 46 (03) : 791 - 811
  • [3] Conditional Monte Carlo Estimation of Quantile Sensitivities
    Fu, Michael C.
    Hong, L. Jeff
    Hu, Jian-Qiang
    [J]. MANAGEMENT SCIENCE, 2009, 55 (12) : 2019 - 2027
  • [4] Improved the bias in kernel quantile function estimation
    Sayah, Abdallah
    Almi, Nassima
    [J]. AIMS MATHEMATICS, 2022, 8 (01): : 1784 - 1799
  • [5] Nonparametric conditional quantile estimation: A locally weighted quantile kernel approach
    Racine, Jeffrey S.
    Li, Kevin
    [J]. JOURNAL OF ECONOMETRICS, 2017, 201 (01) : 72 - 94
  • [6] A NOTE ON QUANTILE ESTIMATION BY THE KERNEL-METHOD
    TAKEUCHI, H
    YOKOYAMA, S
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1991, 20 (01) : 149 - 156
  • [7] Estimating Quantile Sensitivities
    Hong, L. Jeff
    [J]. OPERATIONS RESEARCH, 2009, 57 (01) : 118 - 130
  • [8] KERNEL AND NEAREST-NEIGHBOR ESTIMATION OF A CONDITIONAL QUANTILE
    BHATTACHARYA, PK
    GANGOPADHYAY, AK
    [J]. ANNALS OF STATISTICS, 1990, 18 (03): : 1400 - 1415
  • [9] Kernel quantile-based estimation of expected shortfall
    Yu, Keming
    Ally, Abdallah K.
    Yang, Shanchao
    Hand, David J.
    [J]. JOURNAL OF RISK, 2010, 12 (04): : 15 - 32
  • [10] Value at risk estimation by quantile regression and kernel estimator
    Huang A.Y.
    [J]. Review of Quantitative Finance and Accounting, 2013, 41 (2) : 225 - 251